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PREFACE

These notes are based on

(1) a series of a lectures that the author gave at the Indian Statistical Institute,

Delhi,
1
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(2) Murugan’s thesis,1

(3) and Arveson’s monograph titled “Non-commutative dynamics andE-semigroups”.

The theory of E0-semigroups initiated by R.T. Powers and developed extensively by

William Arveson in the last 3 decades is very rich and has pleasant connections with

probability theory as amply demonstrated by the work of Tsirelson ([35], [36]) and Lieb-

scher ([16]). Roughly speaking, a 1-parameter E0-semigroup is an action of the additive

semigroup [0,∞) on a von Neumann algebra. The study of such 1-parameter actions,

up to a natural equivalence relation, has received much attention during the last three

decades. We refer the reader to [7] for a comprehensive bibliography on the subject and

a more thorough treatment. We also recommend the reader to consult [15] for a survey

on the 1-parameter theory.

The classification of 1-parameter E0-semigroups on a type I factor is still mysterious.

Till now, the only known classification is that of type I E0-semigroups which was due

to Arveson and the classification was carried out in his 1989 AMS memoir, “Continuous

analogues of Fock space” ([6]). The study of E0-semigroups on type II and type III

factors are still at a nascent stage. The work of R. Srinivasan and Oliver Margetts ([17])

is significant in this direction. Recently, there have been efforts to extend the theory of

E0-semigroups/CP -semigroups to the multivariable context. The notable papers that

explore the dilation theoretic aspects of non-commutative dynamics over several variables

are [27], [25], [26], [28] and [31].

Mathematically speaking, there is no reason to restrict our attention to the 1-parameter

case. The basic theory carries over for general semigroups as well.

(1) Are there good motivations for this generalisation ?

(2) Are there enough examples ? Does understanding these examples result in good

mathematics ?

(3) Does one have to use different techniques from other fields to tackle these exam-

ples ?

Well, the answer to (1) is, to be really honest, “It is not clear”. However the answers to

(2) and (3) are a firm “yes”. We refer the reader to the paper [4] for the justification of

(2) and (3). It is for reasons (2) and (3) that the author believes it is worth investigating

beyond the one parameter case.

What is the purpose of these notes ? The one and only purpose of these notes is

to record, for future reference, the fact that the basic theory carries over for general

semigroups. In particular, we give details of proofs of many results of the 1-parameter

1I thank Murugan for being very generous in granting me permission to write Sections 8 and 9 based

on his thesis.
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theory, which require little modification, in the context of general subsemigroups of

locally compact groups (a good example to keep in mind is that of a closed convex

cone in a Euclidean space). The reason is when one investigates multiparameter E0-

semigroups, it is better to have a reference to point to rather than writing “the details

are similar to the one parameter case and left to the reader”, especially, if it is repeated

several times. These notes serve that purpose.

We also mention some of the results obtained, so far, in the multiparameter context,

especially for cones, and refer the reader to the appropriate references wherever we make

a mention of it. We would like to mention that this lecture notes is written keeping in

mind a typical Indian graduate student who is working in the area of operator algebras.

All the Hilbert spaces that we consider are over C and are separable. Moreover our

convention is that the inner product is linear in the first variable.

To repeat, the sole purpose is to put things down in writing and nothing else, as all

the ideas are already there in Arveson’s monograph. Thus no originality is claimed. If

a reference is not given, it should be understood implicitly that the proof is a step by

step adaptation of the ideas given in Arveson’s monograph. I would like to end this very

short introduction by thanking Murugan and Anbu who have helped me immensely in

my little understanding of the subject.

S. Sundar (sundarsobers@gmail.com)

Institute of Mathematical Sciences (HBNI), CIT Campus,

Taramani, Chennai, 600113, Tamilnadu, INDIA.
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1. Normal endomorphisms of B(H)

Let H be a separable Hilbert space2. We denote the algebra of bounded operators

on H by B(H) and the set of compact operators by K(H). The space of trace class

operators on H is denoted by L1(H). First let us recall the following facts about trace

class operators.

(1) Let T ∈ B(H) be a positive operator and let {ξ1, ξ2, · · · } be an orthonormal basis

for H. Then the infinite sum
∑∞

n=1〈Tξn|ξn〉 is called the trace of T and is denoted

Tr(T ). It is a fact that Tr(T ) does not depend on the choice of the orthonormal

basis.

(2) Let T ∈ B(H) be given. We say that T is trace class if Tr(|T |) is finite where |T | is
the square root of T ∗T . Suppose T is trace class. Then for any orthonormal basis

{ξ1, ξ2, · · · }, the infinite sum
∑∞

n=1〈Tξn|ξn〉 converges and the sum is independent

of the chosen basis. We set

Tr(T ) :=
∞∑
n=1

〈Tξn|ξn〉

where {ξ1, ξ2, · · · } is an orthonormal basis for H. Moreover Tr(T ) is called the

trace of T . We denote the set of trace class operators on H by L1(H).

(3) The set L1(H) is a two sided ideal in B(H) and is contained in K(H). Also the

map L1(H) 3 T → Tr(T ) ∈ C is linear.

(4) For T ∈ L1(H), set ||T ||1 := Tr(|T |). Then || ||1 is a norm on L1(H) and with

respect to this norm L1(H) is a separable Banach space.

The following two results are the non-commutative versions of the fact that c∗0
∼= `1

and (`1)∗ ∼= `∞. For T ∈ L1(H), define ωT : K(H)→ C by

ωT (A) = Tr(TA).

For A ∈ B(H), define ρA : L1(H)→ C by

ρA(T ) = Tr(TA).

Theorem 1.1. The map

L1(H) 3 T → ωT ∈ K(H)∗

is an isometric isomorphism. Also the map

B(H) 3 A→ ρA ∈ L1(H)∗

is an isometric isomorphism.

2All the Hilbert spaces that we consider are assumed to be separable.



NOTES ON E0-SEMIGROUPS 5

For a proof of the above theorem, see [34]. Thus, we can identify B(H) with the dual

of L1(H) and the weak ∗-topology on B(H), induced via this identification, is called the

σ-weak topology.

Definition 1.2. Let α : B(H)→ B(H) be a ∗-endomorphism. We say that α is normal

if α is continuous with respect to the σ-weak topology.

We will only consider endomorphisms which preserve the ∗-structure. Thus, we simply

call a ∗-endomorphism an endomorphism. A useful fact that enables us to check nor-

mality of ∗-endomorphism is given below. We abbreviate convergence in strong operator

topology by writing SOT and in weak operator topology by writing WOT.

Remark 1.3 (Krein-Smulian). Let E be a separable Banach space and φ : E∗ → C be

a linear functional. Then φ is weak ∗-continuous if and only if φ is weak ∗-sequentially

continuous. For a proof, the reader is referred to Corollary 12.8 of [9].

Proposition 1.4. Let α : B(H) → B(H) be a ∗-endomorphism. Then the following

statements are equivalent.

(1) The endomorphism α is normal.

(2) Suppose An → A in WOT. Then α(An)→ α(A) in WOT.

Proof. On bounded sets, WOT-convergence and σ-weak convergence coincide. Thus

(1) implies (2). Now suppose (2) holds. Fix T ∈ L1(H). We claim that the map

B(H)→ Tr(α(A)T ) ∈ C

is σ-weakly continuous.

First assume that T is finite rank. We apply Krein-Smulian theorem. Let (An) be

a sequence in B(H) such that An → A in the σ-weak topology. Then An → A in

WOT. The hypothesis implies that α(An)→ α(A) in WOT. Consequently, the sequence

Tr(α(An)T )→ Tr(α(A)T ). Hence we have proved the claim when T is finite rank. The

claim now follows from the fact that finite rank operators are dense in L1(H). The proof

is now complete. 2

Let d ∈ {1, 2, · · · } ∪ {∞} and {Vi}di=1 be a family of isometries with orthogonal range

projections, i.e. for i 6= j, V ∗i Vj = 0. Suppose d is finite. If we define α : B(H)→ B(H)

by the formula:

α(A) :=
d∑
i=1

ViAV
∗
i

then α is a normal endomorphism. Moreover α is unital if and only if
∑d

i=1 ViV
∗
i = 1.

The content of the next proposition is that α makes sense even if d is infinite.
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Proposition 1.5. Let {Vi}∞i=1 be a sequence of isometries with orthogonal range projec-

tions. For n ≥ 1, define αn : B(H)→ B(H) by the formula

αn(A) :=
n∑
i=1

ViAV
∗
i .

Then for every A ∈ B(H), αn(A) converges in SOT. Let α : B(H) → B(H) be defined

by

α(A) := lim
n→∞

αn(A)

where the limit is taken in the SOT sense. Then α is a normal ∗-endomorphism of B(H).

Moreover α is unital if and only if
∑∞

i=1 ViV
∗
i = 1 in SOT sense.

Proof. Set P := limn→∞
∑n

i=1 ViV
∗
i where the limit is taken in the SOT sense. Note

that P exists and is a projection. Let ξ ∈ H and let A ∈ B(H) be given. Since {Vi}∞i=1

have orthogonal range projections and Vi’s are isometries, it follows that∣∣∣∣ n∑
i=m+1

ViAV
∗
i ξ
∣∣∣∣2 =

n∑
i=m+1

||AV ∗i ξ||2 ≤ ||A||2
n∑

i=m+1

||V ∗i ξ||2(1.1)

≤ ||A||2
∣∣∣∣ n∑
i=m+1

ViV
∗
i ξ
∣∣∣∣2.(1.2)

Since
∑∞

i=1 ViV
∗
i converges strongly, it follows from Eq. 1.1 that for every A ∈ B(H),

αn(A) converges strongly.

It is clear that α is a ∗-endomorphism. Next we claim that α is normal. Fix ξ, η ∈ H.

Define fn : B(H)→ C and f : B(H)→ C as follows:

fn(A) : = 〈αn(A)ξ|η〉

f(A) : = 〈α(A)ξ|η〉.

Note that fn is continuous with respect to the weak operator topology. Estimate 1.1

implies that fn converges to f uniformly on bounded subsets of B(H). Thus f is con-

tinuous on every closed ball equipped with the WOT. The proof is now completed by

appealing to Prop. 1.4. 2

Our first result, which is fundamental to what follows, is that every normal endomor-

phism arises in the above fashion. This is essentially a corollary of the representation

theory of compact operators which we undertake next.

2. The representation theory of K(H)

In this section, we discuss the representation theory of the algebra of compact op-

erators. Let H be a separable Hilbert space and let K(H) be the algebra of compact
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operators on H. Let us fix notation. For ξ, η ∈ H, let θξ,η be the rank one operator

defined by the equation

θξ,η(γ) = ξ〈γ|η〉.

The linear span of {θξ,η : ξ, η ∈ H}, which is the ∗-algebra of finite rank operators, is

dense in K(H). Observe the following formulas: For T ∈ B(H), ξ, η, ξ
′
, η
′ ∈ H,

Tθξ,η = θTξ,η

θξ,ηT = θξ,T ∗η

θξ,ηθξ′ ,η′ = 〈ξ′ |η〉θξ,η′

θ∗ξ,η = θη,ξ.

Choose an orthonormal basis {ξ1, ξ2, · · · } and set Eij := θξi,ξj . Then {Eij}i,j is a system

of “matrix” units, i.e. EijEkl = δjkEil and E∗ij = Eji.

Lemma 2.1. The inclusion K(H) 3 T → T ∈ B(H) defines an irreducible representa-

tion of K(H).

Proof. Let W ⊂ H be a non-zero K(H) invariant subspace. Choose a unit vector

ξ0 ∈ W . Then for ξ ∈ H, ξ = θξ,ξ0(ξ0) ∈ W . This implies that W = H. Hence the proof.

2

Let us call the above representation as the identity representation. The crucial facts

about the representation theory of compacts are the following:

(1) Any non-degenerate representation of K(H) is a direct sum of irreducible repre-

sentations.

(2) The only irreducible representation, up to unitary equivalence, of K(H) is the

identity representation.

This is the content of the next theorem.

Theorem 2.2. Let π : K(H) → B(H̃) be a non-degenerate representation. Then there

exists a Hilbert space H0 and a unitary U : H⊗H0 → B(H̃) such that

π(A) = U(A⊗ 1)U∗

for A ∈ K(H).

Proof. Set En :=
∑n

i=1Eii. Note that En is an approximate identity of K(H). Since

π is non-degenerate, it follows that π(En) → 1 in SOT. Thus there exists i such that

π(Eii) 6= 0. Choose such an i. We claim that π(Ejj) 6= 0 for every j. Note that π(Eij) is

a partial isometry with initial space π(Ejj) and final space π(Eii) 6= 0. Hence π(Ejj) 6= 0.

This proves our claim.
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Let H0 be the range space of π(E11). Denote the dimension of H0 by d and let {ηi}di=1

be an orthonormal basis for H0. We claim that {π(Ei1)ηj}i,j is total in H̃. Denote the

closed linear span of {π(Ei1)ηj}i,j by H1. It is clear that π(Ers) leaves H1 invariant for

every r, s. Since the linear span of {Ers} is norm dense in K(H), it follows that H1 is

invariant under π and so is H⊥1 .

Suppose H⊥1 6= {0}. By definition, it follows that H0 ⊂ H1. Hence H⊥1 ⊂ H⊥0 =

Ker(π(E11)). Thus π(E11) = 0 on H⊥1 . But π(Ei1) is a partial isometry with final space

π(Eii) and initial space π(E11) = 0 on H⊥1 . Consequently, π(Eii) = 0 on H⊥1 for every i

which contradicts the fact that π(En)→ 1 strongly. This proves our claim.

Let r, s ∈ N and j, k ∈ {1, 2, · · · , d} be given. Calculate as follows to observe that

〈π(Er1)ηj|π(Es1)ηk〉 = 〈π(E1s)π(Er1)ηj|ηk〉

= δrs〈π(E11)ηj|ηk〉

= δrs〈ηj|ηk〉

= δrsδjk.

The above calculation together with the fact that {π(Ei1)ηj}i,j is total in H̃ ensures

that there exists a unitary U : H ⊗H0 → H̃ such that U(ξi ⊗ ηj) = π(Ei1)ηj. A direct

calculation reveals that U(Ers ⊗ 1)U∗ = π(Ers). Since the linear span of {Ers : r, s} is

dense in K(H), it follows that π(A) = U(A⊗ 1)U∗ for every A ∈ K(H). 2

Exercise 2.1. Let π : K(H)→ B(H̃) be a non-degenerate representation. Suppose there

exists a Hilbert space H0 and a unitary U : H⊗H0 → H̃ such that

π(A) = U(A⊗ 1)U∗

for A ∈ K(H). Show that dim(H0) is the dimension of the range space of π(p) where p

is any rank one projection. The dimension of H0 is called the the multiplicity of the

identity representation in π.

With the representation theory of the algebra of compact operators in hand, we can

now prove that every normal endomorphism of B(H) arises as in Prop. 1.5.

Theorem 2.3. Let α : B(H) → B(H) be a non-zero normal ∗-endomorphism. Then

there exists d ∈ {1, 2, · · · }∪{∞} and isometries {Vi}di=1 with orthogonal range projections

such that

α(A) =
d∑
i=1

ViAV
∗
i

for A ∈ B(H). When d is infinite, the sum is interpreted in the sense of a strong operator

limit.
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Proof. Let En :=
∑n

i=1 Eii. Note that En increases to 1 in SOT and hence in σ-weak

topology. Since the endomorphism α is normal, it follows that α(En) → α(1) in the σ-

weak topology. But α(En) is an increasing sequence of projections. Thus α(En)→ α(1)

in SOT. Set P := α(1).

Observe that the range of α is contained in PB(H)P ∼= B(PH). Restricting α to

K(H), we obtain a non-degenerate representation of K(H) on PH. Let H0 and U be as

in Theorem 2.2. Let d := dim(H0) and {ηi}di=1 be an orthonormal basis for H0. Define

for i ∈ {1, 2, · · · , d}, Vi : H → H by the formula:

Viξ = U(ξ ⊗ ηi)

for ξ ∈ H. Then clearly Vi’s are isometries with orthogonal range projections. Note that∑d
i=1 ViV

∗
i = P .

Let ξ ∈ H be given. Fix A ∈ K(H). Calculate as follows to observe that,

α(A)Viξ = U(A⊗ 1)U∗U(ξ ⊗ ηi)

= U(Aξ ⊗ ηi)

= ViAξ.

Thus α(A)Vi = ViA. Post multiply by V ∗i and add to see that for every finite n ≤ d,

α(A)(
n∑
i=1

ViV
∗
i ) =

n∑
i=1

ViAV
∗
i .

Letting n → d, we conclude that α(A) = β(A) where β(A) :=
∑d

i=1 ViAV
∗
i for every

compact operator A.

Theorem 1.5 implies that β is normal. As α is normal and K(H) is σ-weakly dense in

B(H), we have

α(A) =
d∑
i=1

ViAV
∗
i

for A ∈ B(H). This completes the proof.

3. The space of intertwiners

Theorem 1.5 and Theorem 2.3 gives a complete characterisation of a single normal

endomorphism. However the isometries appearing in Theorem 2.3 is far from unique.

In other words, Theorem 2.3 is basis/coordinate dependent. A coordinate free way

of describing a single endomorphism is achieved through the notion of the space of

intertwiners, a notion which is extremely fundamental in Arveson’s programme of E0-

semigroups.
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Definition 3.1. Suppose α : B(H)→ B(H) is a normal endomorphism. Let

Eα := {T ∈ B(H) : α(A)T = TA for all A ∈ B(H)}.

The space Eα is called the intertwining space of α.

Let α be a normal endomorphism of B(H) and let E = Eα be the intertwining space of

α. Note that E consists precisely of the intertwiners between the identity representation

and α. Observe the following properties of E.

(1) The set E is a norm closed subspace of B(H).

(2) Let T, S ∈ E be given. Calculate as follows to observe that for A ∈ B(H),

T ∗SA = T ∗α(A)S

= AT ∗S.

Thus, T ∗S lies in the commutant of B(H). Consequently, T ∗S is a scalar which

we denote by 〈S|T 〉.
(3) Note that the map E × E 3 (S, T ) → 〈S|T 〉 = T ∗S ∈ C is an inner product on

E. Moreover the norm induced by the inner product coincides with the operator

norm. Since E is norm closed, it follows that E is a Hilbert space with respect

to the inner product 〈 | 〉. We always consider E as a Hilbert space with respect

to this inner product.

(4) Let {Vi}di=1 be as in Theorem 2.3. It is clear that Vi ∈ E and {Vi}di=1 is an

orthonormal set of E. We claim that {Vi}di=1 is an orthonormal basis for E.

Suppose R ∈ E is such that 〈R|Vi〉 = 0 for every i. Then R∗Vi = 0. Consequently,

for A ∈ B(H), R∗α(A) =
∑d

i=1 R
∗ViAV

∗
i = 0. But R ∈ E. Hence AR∗ =

R∗α(A) = 0 for A ∈ B(H). This implies that R∗ = 0 and hence R = 0. This

proves our claim. A consequence of this fact is that E is a separable Hilbert

space.

(5) We write EH for the closed linear span of {Tξ : T ∈ E, ξ ∈ H}. Since {Vi}di=1 is

an orthonormal basis for E, it follows that the projection corresponding to EH is∑d
i=1 ViV

∗
i = α(1). Note that if {Wi} is another orthonormal basis of E, then EH

is the closed linear span of {Wiξ : i = 1, 2, · · · , d, ξ ∈ H}. Hence the projection

corresponding to EH is
∑d

i=1 WiW
∗
i . As a consequence, α(1) =

∑d
i=1 WiW

∗
i for

any orthonormal basis of E. Note that α is unital if and only if EH = H.

(6) Let {Wi}di=1 be any orthonormal basis of E. We claim that α(A) =
∑d

i=1WiAW
∗
i .

Fix A ∈ B(H). Note that α(A)Wi = WiA. Post multiply by W ∗
i and add up to
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d to see that

α(A) = α(A)α(1) = α(A)(
d∑
i=1

WiW
∗
i ) =

d∑
i=1

WiAW
∗
i .

This proves our claim.

The following is a corollary of our discussions.

Corollary 3.2. Let α and β be normal endomorphisms of B(H). Then α = β if and

only if Eα = Eβ.

Definition 3.3. Let E ⊂ B(H) be a norm closed subspace. We call E an intertwining

space if

(1) the space E is separable as a Banach space, and

(2) for every S, T ∈ E, 〈S|T 〉 := T ∗S is a scalar.

Let E be an intertwining space. Then 〈 | 〉 is an inner product on E and the norm

inherited via this inner product coincides with the operator norm. Consequently, E is

a separable Hilbert space. We always view interwining spaces as Hilbert spaces. The

following proposition justifies our terminology.

Proposition 3.4. Let E ⊂ B(H) be an intertwining space. Then there exists a unique

normal endomorphism α of B(H) such that E = Eα.

Proof. Let {Vi}di=1 be an orthonormal basis of E. Define α(A) =
∑d

i=1 ViAV
∗
i . From

the discussions preceding Corollary 3.2, it follows that Eα is the closed linear span, the

closure is taken in the operator norm topology, of {Vi}di=1. Hence Eα = E. Uniqueness

follows from Corollary 3.2.

Remark 3.5. Summarising our discussions so far, we conclude that

α→ Eα

sets up a one-one correspondence between the set of normal endomorphisms of B(H) and

the set of intetwining spaces. So in principle, anything we say about the endomorphism

α says something about the intertwining space Eα and vice versa.

A nice application of the correspondence between endomorphisms and intertwining

spaces is the following.

Proposition 3.6. Let α and β be normal endomorphisms on B(H) and B(K) respec-

tively. Then there exists a unique normal endomorphism, denoted α ⊗ β, on B(H⊗K)

such that

α⊗ β(A⊗B) = α(A)⊗ β(B)
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for A ∈ B(H) and B ∈ B(K).

Proof. Uniqueness follows from the fact the linear span of {A ⊗ B : A ∈ B(H), B ∈
B(K)} is σ-weakly dense in B(H ⊗ K). Let E be the intertwining space of α and F

be the intertwining space of β. Define E ⊗ F to be the closure in the operator norm

topology of the linear span of {S ⊗ T : S ∈ E, T ∈ F}. It is clear that E ⊗ F is an

intertwining space. As a Hilbert space, E ⊗ F is the tensor product of E and F .

Denote the normal endomorphism corresponding to E ⊗ F by α⊗ β. We claim that

α⊗ β(A⊗B) = α(A)⊗ β(B)

for A ∈ B(H) and B ∈ B(K). Note that the projection α(1) ⊗ β(1) acts as identity

operator on (E ⊗ F )(H⊗K). Thus α⊗ β(1) ≤ α(1)⊗ β(1).

Fix A ∈ B(H) and B ∈ B(K). Let {Vi}ri=1 and {Wj}sj=1 be orthonormal bases for E

and F respectively. Post multiply the equation

α⊗ β(A⊗B)(Vi ⊗Wj) = (Vi ⊗Wj)(A⊗B)

by V ∗i ⊗ 1 and add up to r to obtain

α⊗ β(A⊗B)(α(1)⊗Wj) = α(A)⊗WjB

Post multiply the above equation by 1⊗W ∗
j and add to arrive at the equation

α⊗ β(A⊗B)(α(1)⊗ β(1)) = α(A)⊗ β(B).

The conclusion follows since α⊗ β(1) ≤ α(1)⊗ β(1). This completes the proof. 2

Let α and β be unital normal endomorphisms of B(H). We denote the space of

intertwiners between α and β by L(α, β), i.e.

L(α, β) = {T ∈ B(H) : Tα(A) = β(A)T, for A ∈ B(H)}.

In particular, L(α, α) = α(B(H))
′
. Let E and F be the intertwining space of α and β

respectively. Let C ∈ L(α, β) be given.

(1) Observe that CT ∈ F whenever T ∈ E.

(2) Define θC : E → F by θC(T ) = CT . Then, it is clear that θC is a bounded linear

operator from E → F .

Exercise 3.1. With the foregoing notation, the map L(α, β) 3 C → θC ∈ B(E,F ) is an

isometric isomorphism. Show that α(B(H))
′ ∼= B(E) as von Neumann algebras.

Hint: The map E ⊗H 3 T ⊗ ξ → Tξ ∈ H is a unitary.
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4. E0-semigroups

In this section, we define the basic object of our study “E0-semigroups” and we discuss

the most basic example of the subject “the CCR flows”. For the rest of these notes,

unless otherwise mentioned, the letter G stands for an arbitrary locally compact second

countable Hausdorff topological group and the letter P stands for a closed subsemigroup

of G containing the identity element e. We assume that the interior of P , denoted Ω, is

dense in P .

Although we do not discuss any particular example of a semigroup, it is better to have

a few examples to keep in mind and they are given below.

(1) The classical case is when G = R and P = [0,∞).

(2) Set G = Rd and let P be a closed convex in Rd such that P − P = Rd.

(3) ax+ b semigrop: Let

G :=
{[a b

0 1

]
: a > 0, b ∈ R

}
and let

P :=
{[a b

0 1

]
: a ≥ 1, b ≥ 0

}
.

(4) Heisenberg beak: Let

G :=
{1 x z

0 1 y

0 0 1

 : x, y, z ∈ R
}

and let

P :=
{1 x z

0 1 y

0 0 1

 : x, y, z ≥ 0
}
.

(5) Let G = Zd and P be a finitely generated subsemigroup of Zd. We can assume

that P − P = Zd.

Definition 4.1. Let H be a separable Hilbert space. By an E0-semigroup, over P , on

B(H), we mean a family α := {αx}x∈P such that

(a) for x ∈ P , αx is a normal endomorphism of B(H),

(b) for x ∈ P , αx is unital, i.e. αx(1) = 1, and

(c) for T ∈ L1(H) and A ∈ B(H), the map P 3 x→ Tr(αx(A)T ) ∈ C is continuous.

Noting the fact that endomorphisms are contractive, we see immediately that (c) is

equivalent to the following condition:
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(c)
′

for A ∈ B(H), ξ, η ∈ H, the map P 3 x→ 〈αx(A)ξ|η〉 ∈ C is continuous.

Since the semigroup P will be fixed for the rest of this section, we simply call an E0-

semigroup over P an E0-semigroup.

Lemma 4.2. Let α := {αx}x∈P be an E0-semigroup on B(H). Then for A ∈ B(H),

the map P 3 x→ αx(A) ∈ B(H) is continuous when B(H) is given the strong operator

topology.

Proof. Let U ∈ B(H) be unitary. Then (c)
′

implies that the map P 3 x → αx(U) ∈
B(H) is continuous when B(H) is given the weak operator topology. But {αx(U)}x∈P is

a family of unitaries and the weak operator topology coincides with the strong operator

one on the set of unitary operators. Thus the map P 3 x→ αx(U) ∈ B(H) is continuous

when B(H) is given the strong operator topology. Now the proof is completed by ap-

pealing to the fact that every bounded operator can be written as a linear combination

of four unitary operators. 2

Definition 4.3. Let α := {αx}x∈P be an E0-semigroup on B(H). Suppose U := {Ux}x∈P
is a strongly continuous family of unitaries. We say that U is an α-cocycle if

Uxαx(Uy) = Uxy

for x, y ∈ P .

Exercise 4.1. Let α := {αx}x∈P be an E0-semigroup and U := {Ux}x∈P be an α-cocycle.

Define for x ∈ P , βx : B(H)→ B(H) by

βx(A) = Uxαx(A)U∗x .

Use Lemma 4.2 to prove that β := {βx}x∈P is an E0-semigroup.

Definition 4.4. Let α := {αx}x∈P and β := {βx}x∈P be E0-semigroups on B(H). We say

β is a cocycle perturbation of α and write β ' α if there exists an α-cocycle U := {Ux}x∈P
such that βx(.) = Uxαx(.)U

∗
x .

Observe that ' is an equivalence relation on the set of E0-semigroups on B(H). The

equivalence relation ' is the most basic equivalence relation in the subject. If we have

two E0-semigroups acting on different Hilbert spaces, first we bring both to a common

Hilbert space and compare whether one is a cocycle perturbation of the other.

Let us be more precise. For a unitary U : H → K, where H and K are separable

Hilbert spaces, we denote the map B(H) 3 T → UTU∗ ∈ B(K) by Ad(U). Let α and

β be E0-semigroups on B(H) and B(K). We say α is conjugate to β if there exists a

unitary U : H → K such that βx = Ad(U) ◦ αx ◦ Ad(U)∗. We say α and β are cocycle

conjugate if a conjugate of α is a cocycle perturbation of β.
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Example 4.5. Let U := {Ux}x∈P be a family of unitaries on H which is strongly con-

tinuous. Assume that UxUy = Uxy. Define αx : B(H)→ B(H) by

αx(A) = UxAU
∗
x .

Then α := {αx}x∈P is an E0-semigroup. Note that each αx is an automorphism. Such

an E0-semigroup is called an automorphism group. Clearly α is cocycle conjugate to the

“identity E0-semigroup”, i.e. the E0-semigroup for which each of its endomorphism is

the identity map.

When P = [0,∞), Wigner’s theorem asserts that every automorphism group is one

of the above type. We will have more to say on this later. The above example can be

generalised as follows. Let T be the unit circle. Suppose ω : G×G→ T is a measurable

map. We say ω is a multiplier, or a Borel multiplier, on G, if

ω(x, y)ω(xy, z) = ω(x, yz)ω(y, z)

for x, y, z ∈ G.

By an ω-projective unitary representation of G on a Hilbert space H, we mean a family

of unitaries U := {Ux}x∈G on H such that

UxUy = ω(x, y)Uxy

for x, y ∈ G and U is weakly measurable, i.e. for ξ, η ∈ H, the map G 3 x→ 〈Uxξ|η〉 ∈ C
is measurable.

Example 4.6. Let ω be a Borel multiplier on G and U := {Ux}x∈P be a ω-projective

unitary representation of G on H. Define for x ∈ P , αx : B(H)→ B(H) by

αx(A) = UxAU
∗
x .

It is clear that α := {αx}x∈P is a semigroup of unital normal endomorphisms. The

weak measurability of U implies that for A ∈ B(H) and ξ, η ∈ H, the map P 3 x →
〈αx(A)ξ|η〉 ∈ C is measurable. This is sufficient to ensure that α is an E0-semigroup

(see Section 8).

Let ω be a Borel multiplier on G. The following is the “left” regular ω-projective

representation. Let H = L2(G). Define for x ∈ G, the unitary operator Ux on H by

Uxf(y) = ω(x, x−1y)f(x−1y)

for f ∈ L2(G).
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5. Fock spaces

We proceed towards defining the basic examples of the theory : CCR and CAR

flows. First, we review the symmetric and anti-symmetric Fock spaces first. Let H be a

separable Hilbert space fixed for this section. For n ≥ 1, set

H⊗n := H⊗H⊗ · · · ⊗ H︸ ︷︷ ︸
n times

.

We set H⊗0 := C. For n ≥ 1, let Sn be the symmetric group on {1, 2, · · · , n}. For

σ ∈ Sn, we denote the sign of σ by ε(σ). Thus ε(σ) = 1 if σ is a product of even number

of transpositions and ε(σ) = −1 if it is a product of odd number of transpositions. For

σ ∈ Sn, let Uσ be the unitary on H⊗n defined by the equation

Uσ(ξ1 ⊗ ξ2 ⊗ · · · ⊗ ξn) := ξσ−1(1) ⊗ ξσ−1(2) ⊗ · · · ⊗ ξσ−1(n)

for ξ1, ξ2, · · · , ξn ∈ H.

The space of symmetric tensors, denoted H⊗ns , is defined as

H⊗ns := {ξ ∈ H⊗n : Uσ(ξ) = ξ}.

For n = 0, we set H0
s = C. The symmetric Fock space, denoted Γs(H), is defined as

Γs(H) :=
∞⊕
n=0

H⊗ns .

The symmetric Fock space is also called the space of Bosons by physicists. The vector

1 ⊕ 0 ⊕ 0 ⊕ · · · ∈ Γs(H) is called the vacuum vector or the vacuum state. Usually it is

denoted by the letter Ω. But since for us, Ω stands for the interior of the semigroup P ,

we do not assign a special symbol for the vacuum state.

For n ≥ 1, let ∧nH be defined by

∧nH = {ξ ∈ H⊗n : Uσξ = ε(σ)ξ}.

For n = 0, we set ∧0H = C. We call ∧nH as the space of anti-symmetric tensors in H⊗n.

The anti-symmetric Fock space, denoted Γa(H), is defined as

Γa(H) =
∞⊕
n=0

∧nH.

Physicists call the anti-symmetric Fock space as the space of Fermions. Again the vector

1⊕ 0⊕ 0⊕ · · · is called the vacuum vector or the vacuum state.

Let us first discuss the symmetric Fock space is some detail. We begin with a little

lemma. For ξ ∈ H and n ≥ 1, set ξ⊗n := ξ ⊗ ξ ⊗ · · · ⊗ ξ︸ ︷︷ ︸
n times

. For n = 0, we set ξ⊗0 = 1.

Lemma 5.1. For every n ≥ 1, the set {ξ⊗n : ξ ∈ H} is total in H⊗ns .
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Proof. The statement is clearly true for n = 1. Assume n ≥ 2. Let P be the projection

of H⊗n onto H⊗ns . Then P =
1

n!

∑
σ∈Sn

Uσ. Denote the closed linear span of {ξ⊗n : ξ ∈ H}

by D. Let ξ1, ξ2, · · · , ξn ∈ H be given. Define f : Rn → D by

f(t1, t2, · · · , tn) = (t1ξ1 + t2ξ2 + · · ·+ tnξn)⊗n.

Note that f is a polynomial taking values in D. Consequently, all its coefficients are in

D. Note that the coefficient of t1t2 · · · tn is n! times P (ξ1 ⊗ ξ2 ⊗ · · · ξn). Now the lemma

follows. 2

For ξ ∈ H, let

e(ξ) :=
∞∑
n=0

ξ⊗n√
n!
.

Note that e(ξ) ∈ Γs(H). The set {e(ξ) : ξ ∈ H} is called the set of exponential vectors.

For ξ, η ∈ H,

〈e(ξ)|e(η)〉 = e〈ξ|η〉.

Proposition 5.2. The set of exponential vectors is total in Γs(H).

Proof. Let ξ ∈ H be given. Denote the closed linear span of exponential vectors by

D. Define f : R→ D by f(t) = e(tξ). Note that f is analytic taking values in D. Hence

its coefficients are in D. Note that the coefficient of tn is ξ⊗n√
n!

. An appeal to Lemma 5.1

completes the proof. 2

Remark 5.3. We will repeatedly make use of the following. Suppose H1 and H2 are

Hilbert spaces and S1 and S2 are total subsets of H1 and H2 respectively. Let φ : S1 → S2

be a map such that 〈φ(x)|φ(y)〉 = 〈x|y〉 for x, y ∈ S1. Then there exists a unique isometry

V : H1 → H2 which extends φ. Moreover if φ is a bijection, the isometry V is a unitary.

The following statements follows directly from the previous remark and the totality of

exponential vectors.

(1) Let ξ ∈ H be given. Then there exists a unique unitary operator on Γs(H),

denoted W (ξ), such that

W (ξ)e(η) = e−
||ξ||2

2
−〈η|ξ〉e(η + ξ).

The operators {W (ξ) : ξ ∈ H} are called the set of Weyl operators. Moreover the

Weyl operators satisfy the following relations called the canonical commutation

relations abbreviated as CCR. For ξ, η ∈ H,

W (ξ)W (η) = eiIm〈ξ|η〉W (ξ + η)

where Im(〈ξ|η〉) denotes the imaginary part of 〈ξ|η〉.
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(2) Let H1 and H2 be Hilbert spaces and U : H1 → H2 be a unitary operator.

Then there exists a unique unitary operator, called the second quantisation of U ,

denoted Γ(U) such that for ξ ∈ H1, Γ(U)e(ξ) = e(Uξ). Observe that for ξ ∈ H1

and a unitary U : H1 → H2, Γ(U)W (ξ)Γ(U)∗ = W (Uξ).

(3) Let H1 and H2 be Hilbert spaces. Then there exists a unique unitary operator

from Γs(H1⊕H2)→ Γs(H1)⊗Hs(H2) which maps e(ξ1⊕ξ2) to e(ξ1)⊗e(ξ2). We

always identify Γs(H1⊕H2) with Γs(H1)⊗Γs(H2) via this identification. Under

this identification, note that for ξ1 ∈ H1 and ξ2 ∈ H2,

W (ξ1 ⊕ ξ2) = W (ξ1)⊗W (ξ2).

Note that the CCR relations imply that the linear span of {W (ξ) : ξ ∈ H} is a unital

∗-subalgebra of B(Γs(H)). The fundamental fact that we do not prove, but we need in

the sequel, is stated below. The reader is referred to Prop. 20.9 of [23] for a proof.

Theorem 5.4. The linear span of {W (ξ) : ξ ∈ H} is a unital ∗-subalgebra of B(Γs(H))

and it is strongly dense in B(Γs(H)).

Exercise 5.1. Let U : H1 → H2 be a unitary operator. Show that Γ(U)ξ⊗n = (Uξ)⊗n.

Hint: Use the ideas of the proof of 5.2.

Exercise 5.2. Let A be a contraction on H, i.e. ||A|| ≤ 1. Show that there exists a

unique operator on Γs(H) such that Γ(A)e(ξ) = e(Aξ).

Let us review the facts about the anti-symmetric Fock space. Proofs are mostly omit-

ted as it involves repeating the “Exterior algebra” construction. For ξ ∈ H⊗n, let

Alt(ξ) :=
1

n!

∑
σ∈Sn

ε(σ)Uσ(ξ).

Note that Alt is the orthogonal projection ofH⊗n onto ∧nH. For ξ ∈ ∧mH and η ∈ ∧nH,

define

ξ ∧ η :=
(m+ n)!

m!n!
Alt(ξ ⊗ η).

Then ξ ∧ η = (−1)mnη ∧ ξ. Moreover, ∧ defines an associative multiplication on the

algebraic direct sum
⊕

alg ∧nH. Note that {ξ1 ∧ ξ2 ∧ · · · ∧ ξn : ξi ∈ H} is total in ∧nH.

We have the following formula for the inner product.

Let ξ1, ξ2, · · · , ξn and η1, η2, · · · , ηn ∈ H be given. Then

〈ξ1 ∧ ξ2 ∧ · · · ∧ ξn|η1 ∧ η2 ∧ · · · ∧ ηn〉 = det(〈ξi|ηj〉).

Let D be the linear span of {ξ1 ∧ ξ2 ∧ · · · ∧ ξn} where ξi’s vary over H and n varies

over {0, 1, 2, · · · }. An empty product, i.e. when n = 0, is interpreted as the element 1
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in ∧0H = C. Let us define the creation and annihilation operators on D. For ξ ∈ H, let

a(ξ) and a(ξ)∗ be defined on D by the following formulas:

a(ξ)(ξ1 ∧ ξ2 ∧ · · · ∧ ξn) : = ξ ∧ ξ1 ∧ ξ2 ∧ · · · ∧ ξn

a(ξ)∗(ξ1 ∧ ξ2 ∧ · · · ∧ ξn) : =
n∑
k=1

(−1)k−1〈ξk|ξ〉ξ1 ∧ ξ2 ∧ · · · ∧ ξ̂k ∧ · · · ∧ ξn

where the “hat” symbol indicates the omission of the vector. The operators {a(ξ) :

ξ ∈ H} are called creation operators and the operators {a(ξ)∗ : ξ ∈ H} are called

annihilation operators. It is a good exercise in multilinear algebra to prove that the

creation and annihilation operators are well defined on D. The choice of the notation

for annihilation operators is justified in the next Lemma.

Lemma 5.5. Let ξ ∈ H be given. Then for u, v ∈ D, 〈a(ξ)u|v〉 = 〈u|a(ξ)∗v〉.

Proof. Let ξ1, ξ2, · · · , ξn ∈ H and η1, η2, · · · , ηn+1 ∈ H be given. It is sufficient to show

that

〈a(ξ)(ξ1 ∧ ξ2 ∧ · · · ∧ ξn)|η1 ∧ η2 ∧ · · · ∧ ηn+1〉 = 〈ξ1 ∧ ξ2 ∧ · · · ξn|a(ξ)∗(η1 ∧ η2 ∧ · · · ∧ ηn+1)〉.

Note that the RHS is
∑n+1

k=1(−1)k−1〈ξ|ηk〉〈ξ1 ∧ ξ2 ∧ · · · ∧ ξn|η1 ∧ · · · ∧ η̂k ∧ · · · ∧ ηn+1〉
which is the expression we obtain when we expand the determinant of 〈ξ̃i|ηj〉 along the

first row. Here ξ̃0 = ξ and ξ̃i = ξi−1. But the value of the latter determinant is exactly

〈a(ξ)(ξ1 ∧ · · · ∧ ξn|η1 ∧ · · · ∧ ηn+1〉. This completes the proof.

A direct calculation reveals that, on D, the creation and annihilation operators satisfy

the following canonical anti-commutation relations abbreviated as CAR. For ξ, η ∈ H,

a(ξ)a(η) + a(η)a(ξ) = 0

a(ξ)a(η)∗ + a(η)∗a(ξ) = 〈ξ|η〉

Clearly the map H 3 ξ → a(ξ) is linear. The next proposition shows that creation and

annihilation operators extend to bounded operators on Γa(H). The reason is simple. For

a unit vector ξ, the CAR relations imply that “a(ξ)a(ξ)∗ ≤ 1”.

Proposition 5.6. For ξ ∈ H and u ∈ D, ||a(ξ)u||2 ≤ ||ξ||2||u||2. The same estimate

holds for a(ξ)∗. We denote the unique extension of a(ξ) and a(ξ)∗ to Γa(H) again by

a(ξ) and a(ξ)∗ respectively.
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Proof. Let ξ ∈ H and u ∈ D be given. Calculate as follows to observe that

||a(ξ)u||2 ≤ ||a(ξ)u||2 + ||a(ξ)∗u||2

= 〈a(ξ)u|a(ξ)u〉+ 〈a(ξ)∗u|a(ξ)∗u〉

= 〈(a(ξ)∗a(ξ) + a(ξ)a(ξ)∗)u|u〉

= 〈||ξ||2u|u〉

≤ ||ξ||2||u||2.

This completes the proof. 2

The creation and annihilation operators, now defined on Γa(H), satisfy the CAR

relations. Let N0 = {0, 1, 2, · · · }. Let A be the linear span of

{a(ξ1)a(ξ2) · · · a(ξm)a(η1)∗a(η2)∗ · · · a(ηn)∗ : ξ1, ξ2, · · · , ξm, η1, η2 · · · , ηn ∈ H,m, n ∈ N0}.

An empty product is interpreted as the identity operator.

Proposition 5.7. With the foregoing notation, the vector space A is a unital ∗-subalgebra

of B(Γa(H)). Moreover A is strongly dense in B(Γa(H))

Proof. The fact that A is a unital ∗-subalgebra follows from the CAR relations. It

suffices to show that the commutant of A is C. Let v be the vacuum vector of Γa(H).

We claim that
⋂
ξ∈H

ker(a(ξ)∗) = Cv. By definition, a(ξ)∗v = 0 for every ξ ∈ H. Consider

a vector u ∈ Γa(H) such that a(ξ)∗u = 0. Note that for k ∈ N0 and ξ1, · · · , ξk+1 ∈ H,

〈u|ξ1 ∧ ξ2 ∧ · · · ∧ ξk+1〉 = 〈a(ξ1)∗u|ξ2 ∧ ξ3 ∧ · · · ∧ ξk+1〉 = 0.

Thus u is orthogonal to ∧nH for n ≥ 1. This implies that u is a scalar multiple of v.

This proves our claim.

Let T ∈ A′ be given. Then T leaves
⋂
ξ∈H

Ker(a(ξ)∗) invariant. Let λ ∈ C be such that

Tv = λv. Calculate as follows to observe that for ξ1, ξ2 · · · ξn ∈ H,

T (ξ1 ∧ ξ2 ∧ · · · ∧ ξn) = Ta(ξ1)a(ξ2) · · · a(ξn)v

= a(ξ1)a(ξ2) · · · a(ξn)Tv

= λa(ξ1)a(ξ2) · · · a(ξn)v

= λ(ξ1 ∧ ξ2 ∧ · · · ∧ ξn).

Thus T = λ. This proves that A′ = C and hence the proof. 2

Second quantization: Let A be a contraction on H. Denote the operator on H⊗n,

whose action is given below, by A⊗n:

A⊗n(ξ1 ⊗ ξ2 ⊗ · · · ⊗ ξn) = Aξ1 ⊗ Aξ2 ⊗ · · · ⊗ Aξn.
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Note that
∞⊕
n=0

A⊗n is a bounded operator on the full Fock space Γf (H) :=
∞⊕
n=0

H⊗n. It

leaves the the anti-symmetric Fock space (also the symmetric Fock space) invariant. We

denote the restriction of it to the anti-symmetric Fock space by Γ(A). We call Γ(A) the

second quantization of A. Observe that Γ(A)(ξ1 ∧ ξ2 ∧ · · · ξn) = Aξ1 ∧ Aξ2 ∧ · · · ∧ Aξn.

Note that Γ(A) is a unitary (isometry) if A is unitary (isometry).

Tensor product of anti-symmetric Fock spaces: Just like the symmetric Fock space,

the anti-symmetric Fock space of direct sum of two Hilbert spaces is the tensor product

of the corresponding anti-symmetric Fock spaces. Let H1 and H2 be Hilbert spaces.

An application of Remark 5.3 immediately yields a unitary from Γa(H1) ⊗ Γa(H2) →
Γa(H1⊕H2) taking (ξ1∧ξ2∧· · ·∧ξm)⊗(η1∧η2∧· · · ηn) to ξ1∧ξ2∧· · ·∧ξm∧η1∧η2∧· · · ηn.

We always identify Γa(H1⊕H2) with Γa(H1)⊗Γa(H2) via this unitary. Note that under

this identification, we have the equality

a(ξ ⊕ η) = a(ξ)⊗ 1 + Γ(−1)⊗ a(η).

6. CCR and CAR flows

In this section, we define the basic examples in the theory which are CCR and CAR

flows.

Proposition 6.1. Let H be a Hilbert space and V be an isometry on H. Then there

exists a unique unital normal ∗-endomorphism α on B(Γs(H)) such that

α(W (ξ)) = W (V ξ)

for ξ ∈ H.

Proof. Uniqueness follows from the fact that the linear span of {W (ξ) : ξ ∈ H} is

σ-weakly dense in B(Γs(H)). The endomorphism α is described concretely as follows.

Let A ∈ B(Γs(H)) be given. Consider the operator 1⊗A on Γs(Ker(V
∗))⊗ Γ(H). The

isometry V identifies H with Ran(V ). The operator α(A) is defined as the operator on

Γs(H) obtained from 1⊗ A after we make the following identifications.

Γs(Ker(V
∗))⊗ Γs(H) ' Γs(Ker(V

∗))⊗ Γs(RanV ) ' Γs(Ker(V
∗)⊕RanV ) ' Γs(H).

Note that if we perform all the identifications, we obtain

1⊗W (ξ) ' W (0)⊗W (V ξ) ' W (0⊕ V ξ) ' W (V ξ).

Thus α(W (ξ)) = W (V ξ) for ξ ∈ H. The normality of α follows from the fact the map

B(Γs(H)) 3 A→ 1⊗ A ∈ B(Γs(Ker(V
∗))⊗ Γs(H))
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is continuous with respect to the σ-weak topology (this follows by applying a variant of

1.4). This completes the proof. 2

Thus to obtain a semigroup of endomorphisms, all we need is a semigroup of isometries

indexed by P . This is made precise as follows.

Definition 6.2. Let V : P → B(H) be a map. We denote the image of x, under V , by

Vx. Then V is called a strongly continuous isometric representation of P if

(1) for x ∈ P , Vx is an isometry,

(2) for x, y ∈ P , VxVy = Vxy, and

(3) for ξ ∈ H, the map P 3 x → Vxξ ∈ H is continuous where H is given the norm

topology.

We only consider strongly continuous isometric representations and we simply call

a strongly continuous isometric representation an isometric representation. The first

example of an isometric representation is the “left” regular representation of P on L2(P ).

One could generalise this slightly by considering P -invariant closed subsets and we can

consider with multiplicity.

Let A ⊂ G be a non-empty closed subset. We say A is a P -module if PA ⊂ A. Let

A be a P -module and K be a Hilbert space of dimension k. Consider the Hilbert space

H := L2(A,K). For x ∈ P , define Vx on L2(A,K) by the following formula:

(6.3) Vx(f)(y) :=


f(x−1y) if x−1y ∈ A,

0 if x−1y /∈ A

for f ∈ L2(A,K). Then V := {Vx}x∈P is a strongly continous isometric representation

of P on L2(A,K). We call V the isometric representation associated to the P -module A

of multiplicty k and denote it by V (A,k). Note that Vx is simply the compression of λx
on L2(A,K) where {λx}x∈G is the “left” regular representation of G on L2(G,K).

We are now in a position to define our first example of an E0-semigroup.

Theorem 6.3. Let V := {Vx}x∈P be an isometric representation of P on a Hilbert space

H. Then there exists a unique E0-semigroup αV := {αx}x∈P on B(Γs(H)) such that for

x ∈ P and ξ ∈ H,

αx(W (ξ)) = W (Vxξ).

Proof. Uniqueness follows from the fact that linear span of {W (ξ) : ξ ∈ H}, which

we denote by A, is σ-weakly dense in B(Γs(H)). Fix x ∈ P . By Prop. 6.1, there exists

a unique unital normal endomorphism, call it αx, such that αx(W (ξ)) = W (Vxξ) for
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ξ ∈ H. It is clear that αx ◦ αy = αxy on A. The density of A and the normality of the

endomorphisms involved imply that αx ◦ αy = αxy on B(Γs(H)). Set αV := {αx}x∈P .

By Exercise 6.1, it follows that for x ∈ P , A ∈ A, and, ξ, η ∈ Γs(H), the map

P 3 x→ 〈αx(A)ξ|η〉 ∈ C is continuous. Let A ∈ B(Γs(H)), ξ, η ∈ Γs(H) be given. Note

that A is dense in B(Γs(H)) with respect to the strong operator topology. By Kaplansky

density theorem, there exists a sequence (An) ∈ A with ||An|| ≤ ||A|| such that An → A

in SOT. Fix x ∈ P . Since αx is normal, it follows that αx(An) → αx(A) weakly.

Thus 〈αx(An)ξ|η〉 → 〈αx(A)ξ|η〉. In other words, the sequence of continuous functions

P 3 x → 〈αx(An)ξ|η〉 ∈ C converges pointwise to the map P 3 x → 〈αx(A)ξ|η〉 ∈ C.

Consequently, the map P 3 x→ 〈αx(A)ξ|η〉 ∈ C is measurable. Now Theorem 7.1, due

to Murugan, guarantees that αV is an E0-semigroup. This completes the proof. 2

Exercise 6.1. Show that the map H 3 ξ → W (ξ) ∈ B(Γs(H)) is continuous where

H is given the norm topology and B(Γs(H)) is given the weak operator topology. Use

this to show the following. Keep the notation of Theorem 6.3. Prove that for A ∈ A,

ξ, η ∈ Γs(H), the map P 3 x→ 〈αx(A)ξ|η〉 ∈ C is continuous.

The E0-semigroup αV of Prop. 6.3 is called the CCR flow associated to the isometric

representation V . Note that if each Vx is unitary then αx is an automorphism for every

x ∈ P . In that case, αx is Ad(Γ(Vx)). It is clear that if V and W are unitarily equivalent,

then the associated CCR flows αV and αW are conjugate. Let us state two results

regarding the classification of CCR flows. The first, a classical result, which kick started

the subject, is due to Arveson and the second is due to Anbu Arjunan and the author.

For a P -module A and k ∈ {1, 2, · · · }∪{∞}, the CCR flow associated to the isometric

representation V (A,k) is denoted α(A,k) and we call α(A,k) the CCR flow associated to

the module A of multiplicity k. Note that if A and B are P -modules and A = Bz

for some z ∈ G then α(A,k) and α(B,k) are conjugate. For, the corresponding isometric

representations are unitarily equivalent. We call a P -module proper if A 6= G.

Exercise 6.2. Let P = [0,∞) and A be a P -module. If A 6= R then there exists x ∈ R
such that A = [x,∞). Thus, up to a translate, the only proper [0,∞) module is [0,∞).

Theorem 6.4 (Arveson). Let k1, k2 ∈ {1, 2, · · · }∪{∞} be given. The CCR flow α([0,∞),k1)

is cocycle conjugate to α([0,∞),k2) if and only if k1 = k2.

The 1-parameter CCR flow α([0,∞),k) is called the CCR flow of index k in the 1-

parameter literature.

Assume d ≥ 2. Let P ⊂ Rd be a closed convex cone which we assume is spanning, i.e.

P − P = Rd and pointed, i.e. P ∩ −P = {0}. Let A1 and A2 be proper P -modules and
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let k1, k2 ∈ {1, 2, · · · } ∪ {∞} be given. The main content of Anbu Arjunan’s thesis and

[4] is the following theorem.

Theorem 6.5. Keep the foregoing notation. The following are equivalent.

(1) The CCR flow α(A1,k1) is cocycle conjugate to α(A2,k2).

(2) The modules A1 and A2 are translates of each other, i.e. there exists z ∈ Rd such

that A1 + z = A2 and k1 = k2.

The proof of the above theorem relies heavily on groupoids and in particular on the

groupoid approach to the study of Wiener-Hopf operators initiated by Muhly and Re-

nault in their seminal paper [18]. We must mention here that the above theorem was

first proved by barehand methods for a few examples of R2
+-modules in [3].

Next we discuss the CAR flow associated to an isometric representation. Let H be a

Hilbert space. Let A be the linear span of

{a(ξ1) · · · a(ξm)a(η1)∗ · · · a(ηn)∗ : ξ1, ξ2, · · · , ξm, η1, η2, · · · , ηn ∈ H,m, n ∈ N0}.

Proposition 6.6. Let V be an isometry on a Hilbert space. Then there exists a unique

unital endomorphism α on B(Γa(H)) such that

α(a(ξ)) = a(V ξ)

for ξ ∈ H.

Proof. The proof is similar to 6.1. Uniqueness follows from the fact that A is strongly

dense in B(Γa(H)). The endomorphism α is described concretely as follows. Let A ∈
B(Γs(H)) be given. Consider the operator A⊗1 on Γa(H)⊗Γa(Ker(V

∗)). The isometry

V identifies H with Ran(V ). The operator α(A) is defined as the operator on Γa(H)

obtained from A⊗ 1 after we make the following identifications.

Γa(H)⊗ Γa(Ker(V
∗)) ' Γa(RanV )⊗ Γa(Ker(V

∗)) ' Γa(RanV ⊕Ker(V ∗)) ' Γa(H).

Note that if we perform all the identifications, we obtain

a(ξ)⊗ 1 ' a(V ξ)⊗ 1 = a(V ξ)⊗ 1 + Γ(−1)⊗ a(0) ' a(V ξ ⊕ 0) ' a(V ξ).

Thus α(a(ξ)) = a(V ξ) for ξ ∈ H. The proof is now complete. 2

Theorem 6.7. Let H be a Hilbert space and V := {Vx}x∈P be an isometric representation

of P on H. Then there exists a unique E0-semigroup αV := {αx}x∈P on B(Γa(H)) such

that

αx(a(ξ)) = a(Vxξ)

for ξ ∈ H. The E0-semigroup αV is called the CAR flow associated to the isometric

representation V .
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As the proof is similar to the proof of Theorem 6.3, we omit the proof. The linear

span of Weyl operators is replaced by the algebra A. We need the following exercise.

Exercise 6.3. Prove that maps H 3 ξ → a(ξ) ∈ B(Γa(H)) and H 3 ξ → a(ξ)∗ ∈
B(Γa(H)) are continuous where H is given the norm topology and B(Γa(H)) is given the

strong operator topology.

Suppose P = [0,∞). It was proved by Robinson and Powers in [24] that the CAR flow

associated to the module [0,∞) of multiplicity k is conjugate to the CCR flow of index

k. Let us write the CCR flow associated to an isometric representation V by αVccr and

the CAR flow associated to an isometric representation V by αVcar. It is recently proved

by R. Srinivasan in [32] that when P is a higher dimensional cone, αVccr and αVcar need

not be cocycle conjugate.

7. Measurability issues

In this section, we state the results due to Murugan which are fundamental to the

subject. For, the results ensure that CCR and CAR flows are genuine E0-semigroups,

i.e. they are continuous in the appropriate sense (See Theorem 6.3 and 6.7). Recall the

P is a closed subsemigroup of a second countable locally compact topological group G

containing the identity e. We have assumed the interior of P , denoted Ω, is dense in P .

Murugan’s result is the following.

Theorem 7.1 (Murugan). Let α := {αx}x∈P be a family of unital normal endomor-

phisms of B(H). Assume that

(1) for x, y ∈ P , αx ◦ αy = αxy, αe = Id, and

(2) for T ∈ L1(H) and A ∈ B(H), the map P 3 x→ Tr(αx(A)T ) ∈ C is measurable.

Then α is an E0-semigroup.

In short, there is no distinction between measurable E0-semigroups and continuous

E0-semigroups. Using the fact that finite rank operators are dense in L1(H), we see

immediately that (2) is equivalent to the following condition.

(2)
′

For ξ, η ∈ H and A ∈ B(H), the map P 3 x→ 〈αx(A)ξ|η〉 ∈ C is measurable.

Let us indicate Murugan’s proof when the semigroup P = G.

Lemma 7.2. Let α be a normal endomorphism of B(H). Then there exists a unique

contraction β : L1(H)→ L1(H) such that for T ∈ L1(H) and A ∈ B(H),

Tr(β(T )A) = Tr(Tα(A)).
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Proof. Fix T ∈ L1(H). The normality of α implies that the map

B(H) 3 A→ Tr(Tα(A)) ∈ C

is σ-weakly continuous. Hence there exists a unique trace class operator, which we denote

by β(T ), such that Tr(β(T )A) = Tr(Tα(A)). It is routine to check that β is the desired

map. 2

Let us recall a few facts regarding vector valued integration. Suppose E is a

separable Banach space and let (X,B) be a measurable space.

(1) A map f : X → E is said to be weakly measurable if φ◦f is measurable for every

φ ∈ E∗.
(2) Suppose f : X → E is weakly measurable. Then the map X 3 x→ ||f(x)|| ∈ C

is measurable. This is because since E is separable, the unit ball of E∗ w.r.t. to

the weak ∗-topology is a compact metrizable space.

(3) Let µ be a measure on (X,B) and f : X → E be a weakly measurable map.

We say that f is integrable w.r.t µ if x → ||f(x)|| is integrable. Suppose f is

integrable. Define F : E∗ → C by

F (φ) =

∫
φ(f(x))dµ(x).

An application of the Krein-Smulian theorem implies that F is weak ∗-continuous.

Thus there exists a unique element, denoted
∫
f(x)dµ(x) ∈ E, such that

φ(

∫
f(x)dµ(x)) =

∫
φ(f(x))dµ(x).

We call
∫
f(x)dµ(x), the integral of f w.r.t the measure µ. The

∫
satisfies the

usual linearilty properties and DCT.

Assume P = G and let µ be a left Haar measure on G. Let α := {αx}x∈G be a family of

unital normal endomorphisms of B(H) satisfying (1) and (2). For x ∈ P , let βx be the

contraction corresponding to αx given by the previous lemma. Observe that βxβy = βyx.

Note that L1(H) is a separable Banach space. For f ∈ Cc(G) and T ∈ L1(H), define

T (f) =

∫
f(x)βx(T )dµ(x).

Note that for T ∈ L1(H), the map G 3 x→ βx(T ) ∈ L1(H) is weakly measurable. Thus

the integral T (f) makes sense.

Exercise 7.1. Use Hahn-Banach theorem and the separability of L1(H) to show that the

set {T (f) : f ∈ Cc(G), T ∈ L1(H)} is total in L1(H).
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Exercise 7.2. Let f ∈ Cc(G) and T ∈ L1(H) be given. Use the dominated convergence

theorem to show that if xn → x, βxn(T (f))→ βx(T (f)) weakly. In other words, given A

in B(H), the map P 3 x→ Tr(βx(T (f))A) ∈ C is continuous.

Combining the above two exercises and the fact the {βx}x∈G is uniformly bounded,

we obtain for T ∈ L1(H) and A ∈ B(H), the map

P 3 x→ Tr(βx(T )A) = Tr(Tαx(A)) ∈ C

is continuous. Hence α is an E0-semigroup. The proof of the general case is similar. One

replaces Cc(G) by Cc(Ω). For more details, we refer the reader to [20].

Here is an application of Theorem 7.1.

Proposition 7.3. Let α := {αx}x∈P and β := {βx}x∈P be E0-semigroups on B(H) and

B(K) respectively. Then {αx ⊗ βx}x∈P is an E0-semigroup on B(H⊗K) and we denote

it by α⊗ β.

Proof. The only thing that requires verification is the continuity property. One uses

the Kaplansky density theorem argument employed in the proof of Theorem 6.3. The

linear span of {A⊗ B : A ∈ B(H), B ∈ B(K)} takes the role of the linear span of Weyl

operators here. 2

Exercise 7.3. Let V and W be isometric representations of P . Then V ⊕ W is an

isometric representation of P . Show that the “CCR functor” takes direct sum to tensor

product, i.e. αV⊕W is conjugate to αV ⊗ αW .

We need one more result of Murugan in the sequel. Just like there is no difference

between measurable and continuous E0-semigroups, there is no distinction between mea-

surable and continuous cocycles.

Proposition 7.4. Let α := {αx}x∈P be an E0-semigroup. Suppose U := {Ux}x∈P is

family of unitaries satisfying the following conditions.

(1) For x, y ∈ P , Uxαx(Uy) = Uxy, and

(2) for ξ, η ∈ H, the map P 3 x→ 〈Uxξ|η〉 ∈ C is measurable.

Then U is strongly continuous, i.e. U is an α-cocycle.

8. Measure theoretic preliminaries

We collect here the necessary preliminaries concerning measurable field of Hilbert

spaces ([12]) and on standard Borel spaces ([5]). For proofs, the reader is referred to [12]

and [5]. Let (X,B) be a measurable space and {Hx}x∈X be a family of separable Hilbert

spaces. We assume Hx 6= 0 for every x ∈ X. Consider the disjoint union
∐
x∈X

Hx. A map
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f : X →
∐
x∈X

Hx such that f(x) ∈ Hx is called a section. Note that the set of sections is

a vector space.

Definition 8.1. Let (X,B) be a measurable space. Suppose {Hx}x∈X is a family of

Hilbert spaces and Γ is a subset of the set of sections. We say that
(
{Hx}x∈X ,Γ

)
is a

measurable field of Hilbert spaces if

(1) given f, g ∈ Γ, the map X 3 x→ 〈f(x)|g(x)〉 ∈ C is measurable,

(2) if g is a section and 〈g|f〉 is measurable for every f ∈ Γ then g ∈ Γ, and

(3) there exists a countable set {fn}n∈N of Γ such that the set {fn(x) : n ∈ N} is total

in Hx for every x ∈ X.

The space Γ is called the space of measurable sections of the field
∐
x∈X

Hx.

Let
∐
x∈X

Hx be a measurable field of Hilbert spaces. Observe that (1) and (2) implies

that the space of measurable sections forms a module over the algebra of complex valued

measurable functions on X. Here is an example of a measurable field that we need later.

LetH be a separable Hilbert space. A map f : X → H is said to be weakly measurable

if for every ξ ∈ H, the map X 3 x → 〈f(x)|ξ〉 ∈ C is measurable. Let {p(x)}x∈X
be a family of projections which is weakly measurable, i.e. for ξ, η ∈ H, the map

X 3 x → 〈p(x)ξ|η〉 ∈ C is measurable. Set Hx = Ran(p(x)). Define Γ to be the set of

all weakly measurable maps f : X → H such that f(x) ∈ Hx.

Proposition 8.2. With the foregoing notation, the pair
(
{Hx}x∈X ,Γ) is a measurable

field of Hilbert spaces.

Proof. Let ξ1, ξ2, · · · be an orthonormal basis for H. Define fn ∈ Γ by fn(x) = p(x)en.

With this, we leave the proof to the reader. 2

We need the following theorem in the sequel. For a proof, the reader is referred to

Prop. 7.2.7 of [12]. Let
(
{Hx}x∈X ,Γ) be a measurable field of Hilbert spaces. Let

N∞ = N ∪ {∞}. Define d : X → N∞ by d(x) = dimHx.

Proposition 8.3. With the foregoing notation, we have the following.

(1) The dimension function d is measurable.

(2) There exists a sequence {uk} ∈ Γ such that for x ∈ X, {uk(x)}d(x)
k=1 is an orthonor-

mal basis for Hx and uk(x) = 0 if k > d(x).

Exercise 8.1. Let {uk} be as in the previous proposition. Show that for a section f ,

f ∈ Γ if and only x→ 〈f(x)|uk(x)〉 is measurable for every k.
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Next we review the basics of Standard Borel spaces. The best reference for this is

Chapter 3 of Arveson’s remarkable little book “Invitation to C∗-algebras”.

Definition 8.4. A topological space is said to be Polish if it is homeomorphic to a

complete separable metric space.

(1) Compact metric spaces are Polish.

(2) Any closed subset of a Polish space is Polish.

(3) Any open subset of a Polish space is Polish.

A pleasant consequence of (1) and (3) is that a second countable locally compact Haus-

dorff space is Polish. The measurable structure that we consider on a topological space

is always the Borel σ-algebra, i.e. the σ-algebra generated by its open subsets.

Definition 8.5. Let (X,B) be a measurable space. We say that X is standard if there

exists a Polish space Y and a Borel subset E of Y such that X is isomorphic to E where

the measurable structure on E is the one induced by the Borel σ-algebra of Y , i.e. the

measurable subsets of E are the Borel sets of Y contained in E.

Measurable subsets of a standard Borel space are usually called Borel subsets and

measurable maps are called Borel. A nice feature of standard Borel spaces is the following

theorem which is Theorem 3.3.2 of [5].

Proposition 8.6. Let X and Y be standard Borel spaces and f : X → Y be measurable.

(1) If f is 1-1, then f maps Borel sets to Borel sets.

(2) If f is a bijection then f−1 is measurable.

Next we discuss the measurable structure that we impose on the algebra of bounded

operators on a Hilbert space. Let H be a separable Hilbert space. Endow B(H) with

the weak operator topology and endow B(H) with the Borel σ-algebra associated to the

weak operator topology.

Lemma 8.7. The map B(H) 3 T → ||T || ∈ [0,∞) is measurable.

Proof. Let D be a countable dense subset of the unit ball of H. Then

||T || = sup
ξ,η∈D

|〈Tξ|η〉|

for T ∈ B(H). Since for ξ, η ∈ H, the map B(H) 3 T → 〈Tξ|η〉 ∈ C is continuous, it

follows from the above equality that the map B(H) 3 T → ||T || ∈ C is measurable. The

proof is now complete. 2

Lemma 8.8. Let (X,B) be a measurable space and f : X → B(H) be a map. The

following are equivalent.
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(1) The map f is measurable.

(2) For ξ, η ∈ H, the map X 3 x→ 〈f(x)ξ|η〉 ∈ C is measurable.

Proof. By the definition of the weak operator topology, it follows that for ξ, η ∈ H,

the map B(H) 3 T → 〈Tξ|η〉 ∈ C is continuous. Hence (1) implies (2). Now assume (2).

We claim that the map X 3 x→ ||f(x)|| ∈ C is measurable. Let {ξn}∞n=1 be a countable

dense subset of the unit ball of H. Note that for x ∈ X,

||f(x)|| = sup
m,n
|〈f(x)ξm|ξn〉|.

Hence x→ ||f(x)|| is measurable. This proves our claim.

Let Br be the closed ball of B(H), centered at 0 with radius r. Then f−1(Br) is

measurable for each r > 0. Let U be a weakly open subset of B(H). The hypothesis

implies that if U is a basic open set, then f−1(U) is measurable. Observe that f−1(U) =⋃∞
n=1 f

−1(U ∩ Bn). It suffices to prove that f−1(U ∩ Bn) is measurable for every n.

Write U =
⋃
α Uα with Uα being basic open sets. Note that Bn is a compact, second

countable space when given the weak operator topology. Hence there exists a countable

collection {Um} of {Uα} such that U ∩ Bn =
⋃∞
m=1 Um ∩ Bn. Now f−1(U ∩ Bn) =⋂∞

m=1 f
−1(Um) ∩ f−1(Bn). Hence f−1(U ∩Bn) is measurable. This completes the proof.

2

I learnt the following proof from Murugan.

Proposition 8.9. The space B(H) is a standard Borel space.

Proof. Let B be the closed unit ball of B(H) and endow B with the weak opeartor

topology. Then B is metrisable and compact. Thus B is a Polish space. Denote the

open unit ball by B0. Note that B0 =
⋃∞
n=1{T ∈ B : ||T || ≤ 1− 1

n
}. Thus B0 is a Borel

subset of B. Define f : B(H)→ B0 by

f(T ) =
T

1 + ||T ||
.

It is clear that f is a bijection. Lemma 8.7 and Lemma 8.8 imply that f is measurable.

Note that f−1 : B0 → B(H) is given by f−1(S) = S
1−||S|| . Thus f−1 is measurable. Hence

B(H) is a standard Borel space. This completes the proof. 2

Remark 8.10. One could have started with any one of the four topologies on B(H) i,e.

weak, strong, σ-weak or the norm topology. Although the topologies are different, the

measurable structure induced by each one of the topologies is the same.

With these measure theoretic preliminaries, we can proceed towards the study of

product systems.
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9. Product system of an E0-semigroup

First we need a lemma which identifies the intertwining space of the composition of

two normal endomorphisms. For a subset S ⊂ B(H), we write [S] for the closed linear

span of S where the closure is taken in the norm topology. Let H be a separable Hilbert

space.

Lemma 9.1. Let α and β be unital, normal endomorphisms of B(H). Denote the

intertwining space of α and β by E and F respectively. Then the intertwining space of

α ◦ β is [EF ] where EF = {TS : T ∈ E, S ∈ F}. Moreover the map

E ⊗ F 3 T ⊗ S → TS ∈ [EF ]

is a unitary between the Hilbert spaces E ⊗ F and [EF ].

Proof. It is clear that [EF ] is contained in the intertwining space of α ◦ β. Suppose

R is an element in the intertwining space of α ◦ β such that R ⊥ EF . Let {Wj} be an

orthonormal basis for E and {Vi} be an orthonormal basis for F .

Note that for every i, j, R∗WjVi = 0. Post multiply by V ∗i W
∗
j and sum over i to obtain

R∗Wjβ(1)W ∗
j = 0. Now sum over j to obtain R∗α(β(1)) = 0. But R is an element in

the intertwining space of α ◦ β. Thus R∗α(β(1)) = R∗. Hence R = 0. This proves that

[EF ] is the intertwining space of α ◦ β. The second assertion is immediate. 2

Let us recall Exercise 3.1. Let α and β be unital normal endomorphisms of B(H).

Denote the intertwining space of α and β by E and F respectively. Denote the space of

intertwiners between α and β by L(α, β), i.e.

L(α, β) = {T ∈ B(H) : Tα(A) = β(A)T for A ∈ B(H)}.

Given C ∈ L(α, β), define θC ∈ B(E,F ) by θC(T ) = CT . Then C → θC identifies L(α, β)

with B(E,F ). How do we recover C from θC ? The map E ⊗ H 3 T ⊗ ξ → Tξ ∈ H,

denoted UE, and the map F ⊗H 3 S ⊗ η → Sη ∈ H, denoted UF , are unitaries. Then

C = UF (θC ⊗ 1)U∗E. Note that C is a unitary if and only θC is a unitary. We will

repeatedly use the identification C → θC in what follows.

Definition 9.2. By a product system over P , we mean a standard Borel space E, together

with a measurable surjection p : E → P such that the following holds.

(1) For x ∈ P , E(x) := p−1(x) is a non-zero separable Hilbert space. For the identity

element e, E(e) = C.

(2) There exists an associative multiplication E × E 3 (u, v) → uv ∈ E such that

p(uv) = p(u)p(v). Moreover the multiplication E×E 3 (u, v)→ uv is measurable.

(3) The multiplication maps E(e)×E(x) 3 (λ, u)→ λu and E(x)×E(e) 3 (u, λ)→
u.λ are just scalar multiplication on E(x).
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(4) For x, y ∈ P , there exists a unitary ux,y : E(x) ⊗ E(y) → E(xy) that satisfy

ux,y(u⊗ v) = uv.

(5) Let ∆ = {(u, v) ∈ E × E : p(u) = p(v)}. The maps ∆ 3 (u, v)→ u+ v ∈ E and

∆ 3 (u, v)→ 〈u|v〉 ∈ C are measurable.

(6) The scalar multiplication C× E 3 (λ, u)→ λu ∈ E is measurable.

(7) Let Γ = {s : P → E : s is measurable and s(x) ∈ E(x) for x ∈ P}. Then (E,Γ)

is a measurable field of Hilbert spaces.

We simply write a product system as E =
∐
x∈P

E(x).

Definition 9.3. Let E :=
∐
x∈P

E(x) and F :=
∐
x∈P

F (x) be product systems over P .

We say that E and F are isomorphic if for x ∈ P , there exists a unitary operator

θx : E(x)→ F (x) such that

(1) the map θ :=
∐
x∈P

θx is measurable, θ−1 is measurable, and .

(2) the map θ preserves the product rule, i.e. for x, y ∈ P , u ∈ E(x), v ∈ E(y),

θxy(uv) = θx(u)θy(v).

Remark 9.4. Keep the notation of the previous definition. Since E and F are standard

Borel spaces, it suffices to require that θ is measurable.

Our goal in this section is to associate a product system to an E0-semigroup and to

show that the associated product system determines the E0-semigroup, up to cocycle

conjugacy. Let α := {αx}x∈P be an E0-semigroup on B(H). For x ∈ P , let E(x) be the

intertwining space of αx. Let E :=
∐
x∈P

E(x), i.e.

E = {(x, T ) : x ∈ P, T ∈ E(x)}.

Lemma 9.5. The set E is a Borel subset of P × B(H), where P × B(H) is given the

product structure.

Proof. It suffices to show that {(x, T ) : x ∈ P, T ∈ E(x), ||T || ≤ r} is measurable for

every r ∈ N. Fix a natural number r. Let B the closed unit ball of B(H) of radius r

centered at 0. We claim that Er := {(x, T ) : x ∈ P, T ∈ E(x), ||T || ≤ r} is closed in

P ×B. Note that P ×B is metrisable when B is given the weak operator topology. Let

(xn, Tn) be a sequence in Er such that (xn, Tn)→ (x, T ). Let A ∈ B(H) be given.

By Lemma 4.2, it follows that αxn(A∗) converges strongly to αx(A
∗). Now T ∗n → T ∗

in WOT implies that T ∗nαxn(A∗) → T ∗αx(A
∗) in WOT. On the other hand, A∗T ∗n =

T ∗n(αxn(A∗)) since (xn, Tn) ∈ E and A∗T ∗n → A∗T ∗ in WOT. Thus T ∗αx(A
∗) = A∗T ∗.
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Taking adjoints, we obtain TA = αx(A)T . Thus (x, T ) ∈ Er. This proves our claim.

Hence the proof. 2

Keep the foregoing notation.

(1) Recall that for x ∈ P , E(x) is a separable Hilbert space where the inner product

on E(x) is given by 〈T |S〉 = S∗T .

(2) Lemma 9.1 implies that for x, y ∈ P , S ∈ E(x), T ∈ E(y), we have ST ∈ E(xy)

and the map E(x)⊗ E(y) 3 S ⊗ T → ST ∈ E(xy) is a unitary.

(3) It is clear that E(e) = C.

Define a multiplication on E as follows:

(x, S)(y, T ) = (xy, ST ).

It is clear that the above multiplication is associative. Let p : E → P be the projection

onto the first coordinate. Then the pair (E, p) satisfies the first six axioms of Definition

9.2. We make repeated use of Lemma 8.8 to verify the various measurability conditions.

Theorem 9.6. The set E, together with the structures described above, is a product

system.

The only non-trivial thing to prove is (7) of Definition 9.2. We will prove after a series

of Lemmas. Let d : P → [0,∞] be defined by d(x) = dimE(x).

Lemma 9.7. The function d is measurable.

Proof. Observe the following. Suppose α is a normal endomorphism having the rep-

resentation α(A) =
∑d

i=1 ViAV
∗
i as in Theorem 2.3. Note that d is the dimension of

the intertwining space of α. Let Q be a rank one projection. Then α(Q) is a sum of

d orthogonal rank one projections. Thus d = dimRan(α(Q)). But for a projection Q,

dim(Ran(Q)) = Tr(Q).

Fix an orthonormal basis {ξ1, ξ2, · · · } for H and a rank one projection Q. Then,

for x ∈ P , d(x) = Tr(αx(Q)) =
∞∑
i=1

〈αx(Q)ξi|ξi〉. This proves that the function d is

measurable. 2

Partition the semigroup P as follows. For k ∈ N∞, let Pk = {x ∈ P : d(x) = k}. Then

Pk is a measurable subset of P and P :=
∐∞

k=1 Pk. Fix k ∈ N∞ and a point x0 ∈ Pk.
Note that for x ∈ Pk, E(x) and E(x0) are of the same dimension. Let θx : E(x0)→ E(x)

be a unitary. Then there exists a unitary Ux ∈ L(αx0 , αx) ⊂ B(H) such that θx = θUx
(See the paragraph following Lemma 9.1). This means that αx(A) = Uxαx0(A)U∗x . The

point we wish to stress is that we can choose the family {Ux}x∈Pk in a measurable way.

This is the content of the next proposition.
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Proposition 9.8. Let k ∈ N∞ and x0 ∈ Pk be given. Then there exists a family of

unitaries {Ux}x∈Pk such that

(1) for ξ, η ∈ H, the map Pk 3 x→ 〈Uxξ|η〉 ∈ C is measurable, and

(2) for x ∈ Pk and A ∈ B(H), αx(A) = Uxαx0(A)U∗x .

Lemma 9.9. Let (X,B) be a measurable space and {p(x)}x∈X be a weakly measurable

family of projections of constant rank. Fix x0 ∈ X. Then there exists a weakly measurable

family of partial isometries {w(x)}x∈X such that for every x ∈ X, w(x)∗w(x) = p(x) and

w(x)w(x)∗ = p(x0).

Proof. Consider the measurable field of Hilbert space ({Hx}x∈X ,Γ) of Prop. 8.2. Let

d be the rank of p(x0). Apply Prop. 8.3 to find a sequence {uk}dk=1 ∈ Γ such that for

every x ∈ X, {uk(x)}dk=1 is an orthonormal basis for Ran(p(x)). For x ∈ X, let w(x)

be the unique partial isometry such that w(x)∗w(x) = p(x), w(x)w(x)∗ = p(x0) and

w(x)(uk(x)) = uk(x0).

To show that {w(x)}x∈X is weakly measurable, it suffices to show that, for every k, `,

the map x → 〈w(x)∗uk(x0)|u`(x0)〉 is measurable. But the latter is just 〈uk(x)|u`(x0)〉
which is measurable. This completes the proof. 2

Proof of Prop. 9.8. Let Q := θξ0,ξ0 be a rank one projection. Choose a weakly

measurable family of partial isometries {wx}x∈Pk such that wxw
∗
x = αx(Q) and w∗xwx =

αx0(Q). We claim the following.

(1) For every x ∈ Pk, {αx(A)wxξ : A ∈ B(H), ξ ∈ H} is total in H, and

(2) for A,B ∈ B(H), ξ, η ∈ H and x ∈ Pk,

〈αx(A)wxξ|αx(B)wxη〉 = 〈αx0(A)wx0ξ|αx0(B)wx0η〉 = 〈Aξ0|Bξ0〉〈αx0(Q)ξ|η〉.

Note that {AQB : A,B ∈ B(H)} is total in B(H) with respect to the σ-weak topol-

ogy. Thus {αx(A)αx(Q)αx(B)ξ : A,B ∈ B(H), ξ ∈ H} is total in H. But the set

{αx(A)wxw
∗
xαx(B)ξ : A,B ∈ B(H), ξ ∈ H} is contained in {αx(A)wxξ : A ∈ B(H), ξ ∈

H}. As a consequence, we have the totatlity of {αx(A)wxξ : A ∈ B(H), ξ ∈ H} in H.

This proves (1).



NOTES ON E0-SEMIGROUPS 35

Observe that QTQ = 〈Tξ0|ξ0〉Q for every T ∈ B(H). Let x ∈ Pk, ξ, η ∈ H and

A,B ∈ B(H) be given. Calculate as follows to observe that

〈αx(A)wxξ|αx(B)wxη〉 = 〈w∗xαx(B∗A)wxξ|η〉

= 〈w∗xwxw∗xαx(B∗A)wxw
∗
xwxξ|η〉

= 〈w∗xαx(QB∗AQ)wxξ|η〉

= 〈Aξ0|Bξ0〉〈w∗xαx(Q)wxξ|η〉

= 〈Aξ0|Bξ0〉〈w∗xwxw∗xwxξ|η〉

= 〈Aξ0|Bξ0〉〈αx0(Q)ξ|η〉

This proves (2).

For x ∈ Pk, let Ux be the unique unitary such that Ux(αx0(A)wx0ξ) = αx(A)wxξ for

A ∈ B(H) and ξ ∈ H. Let A ∈ B(H) and x ∈ Pk be given. Calculate as follows to

observe that for B ∈ B(H), ξ ∈ H,

Uxαx0(A)(αx0(B)wx0ξ) = Uxαx0(AB)wx0ξ

= αx(AB)wxξ

= αx(A)αx(B)wxξ

= αx(A)Ux(αx0(B)wx0ξ).

The totality of the set {αx0(B)wx0ξ} in H implies that Uxαx0(A) = αx(A)Ux. The

measurability of {Ux}x∈Pk follows from the measurability of {wx}x∈Pk . This completes

the proof. 2

Proof of Theorem 9.6. For every k ∈ N∞, pick a point xk ∈ Pk. Fix an orthonormal

basis, say {Vki}ki=1 of E(xk). Let {U (k)
x } be a family of unitaries as in Proposition 9.8.

Define for i = 1, 2, · · · , Wi(x) ∈ E(x) as follows:

(9.4) Wi(x) = U (k)
x Vki if x ∈ Pk and i ≤ k.

Set Vi(x) = Wi(x) if i ≤ d(x) or else 0. Note that for for every i, Vi is weakly measurable.

Moreover for x ∈ P , {Vi(x)}d(x)
i=1 is an orthonormal basis for E(x). It is now straightfor-

ward to check that E, together with its measurable sections, forms a measurable field of

Hilbert spaces. 2

The product system E constructed in 9.6 is called the product system associated with

the E0-semigroup α. If we wish to emphasize the dependence of E on α, we write it as

Eα. Next we show that the product system Eα completely determines α.

Theorem 9.10. Let α := {αx}x∈P and β := {βx}x∈P be E0-semigroups on B(H). Then

the following are equivalent.
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(1) The E0-semigroups α and β are cocycle conjugate.

(2) The product systems Eα and Eβ are isomorphic.

Proof. Suppose α and β are cocycle conjugate. Let {Ux}x∈P be an α-cocycle such that

for x ∈ P , βx = Ad(Ux) ◦ αx. For x ∈ P , define θx : Eα(x) → Eβ(x) by θx(T ) = UxT .

Then θx is a unitary for every x ∈ P . Let x, y ∈ P and S ∈ Eα(x), T ∈ Eα(y) be given.

Calculate as follows to observe that

θxy(ST ) = UxyST

= Uxαx(Uy)ST

= UxSUyT

= θx(S)θy(T ).

This proves that θ :=
∐

x∈P θx is multiplicative. The fact that θ is Borel follows from

the fact that {Ux}x∈P is a weakly measurable family of unitaries.

Now assume that Eα and Eβ are isomorphic. Let θ :=
∐

x∈P θx : Eα → Eβ be an

isomorphism. Since θx : Eα(x)→ Eβ(x) is a unitary, it follows that there exists a unique

unitary Ux such that Ad(Ux) ◦ αx = βx and θx(T ) = UxT .

We claim that {Ux}x∈P is an α-cocycle. For S ∈ Eα(x), T ∈ Eα(y), the equality

Uxy(ST ) = θxy(ST ) = θx(S)θy(T ) = UxSUyT = Uxαx(Uy)ST

and the fact that {STξ : S ∈ Eα(x), T ∈ Eα(x), ξ ∈ H} is total in H implies that for

x, y ∈ P , Uxy = Uxαx(Uy) i.e. {Ux}x∈P satisfies the cocycle equation.

Let d be the dimension function of Eα. Choose a sequence of measurable sections {Vk}
of Eα such that

(1) Vk(x) = 0 if k > d(x)

(2) for x ∈ P , {Vk(x)}d(x)
k=1 is an orthonormal basis for Eα(x).

Fix x ∈ P . Observe that UxVk(x) = θx(Vk(x)). Post multiply by Vk(x)∗ and add up to

d(x) to see that for x ∈ P ,

Ux =

d(x)∑
k=1

θx(Vk(x))Vk(x)∗.

The map θ is measurable. This implies that x→ θx(Vk(x)) is measurable for every k. A

consequence of the above equality is that x → Ux is weakly measurable. Appealing to

Proposition 7.4, we conclude that {Ux} is an α-cocycle. By definition, βx = Ad(Ux)◦αx.
Hence β is a cocycle perturbation of α. This completes the proof. 2

Let us specialise to the case of E0-semigroups which are made of “automorphisms”.

Let α := {αx}x∈P be an E0-semigroup such that for every x ∈ P , αx is an automorphism.



NOTES ON E0-SEMIGROUPS 37

Let Eα be the product system associated to α. Since αx is an automorphism, it follows

that dimEα(x) = 1 for every x ∈ P . This is because if Q is a rank one projection then

αx(Q) is a minimal and hence a rank one projection.

Note that Eα is a measurable field of Hilbert spaces, each of whose fibres are one

dimensional. Thus, there exists a weakly measurable family of unitaries {Ux}x∈P such

that αx = Ad(Ux). Choose such a family. Note that αx ◦ αy = αxy implies that for

x, y ∈ P , there exists ω(x, y) ∈ T such that

Uxy = ω(x, y)UxUy.

It is routine to verify that ω is a Borel multiplier. Summarising our discussion so far,

we have the following.

Theorem 9.11. Let α := {αx}x∈P be an E0-semigroup on B(H) such that αx is an

automorphism for every x ∈ P . Then there exists a Borel multiplier ω and a ω-projective

unitary representation {Ux}x∈P on H such that for x ∈ P ,

αx(A) = UxAU
∗
x .

If we specialise the above theorem to the case when P = [0,∞), we obtain Wigner’s

theorem. First we need the following fact. The proof can be found in [29].

Lemma 9.12. Let ω be a Borel multiplier on R. Then there exists a Borel function

f : R→ T such that ω(s, t) = f(s)f(t)f(s+ t)−1 for s, t ∈ R.

Theorem 9.13 (Wigner’s theorem). Let α := {αt}t≥0 be an E0-semigroup on B(H).

Suppose that αt is an automorphism for every t ≥ 0. Then there exists a strongly

continuous unitary representation {Ut}t≥0 such that αt = Ad(Ut).

Proof. First we extend the E0-semigroup α to an E0-semigroup over R. Let t ∈ R be

given. Write t = r − s with r, s ≥ 0. Set αt = αr ◦ α−1
s . It is routine to check that αt

depends only on t and {αt}t∈R is an E0-semigroup over R which extends α.

By Theorem 9.11, it follows that there exists a Borel multiplier ω on R and a ω-

projective unitary representation {Wt}t∈R such that αt = Ad(Wt). Choose a Borel map

f : R → T such that ω(s, t) = f(s)f(t)
f(s+t)

. Set Ut = f(t)Wt. Then {Ut}t∈R is a weakly

measurable family of unitaries such that UsUt = Us+t. Imitating the proof of 7.1, we

can conclude that {Ut}t∈R is strongly continuous. But Wt and Ut differ by a scalar of

modulus 1. Thus for t ∈ R, αt = Ad(Wt) = Ad(Ut). This completes the proof. 2

Arveson’s question: One of the most natural and also the fundamental question

in Arveson’s programme of E0-semigroups is the following.
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Is every product system, over P , isomorphic to a product system associated with an

E0-semigroup over P ? In other words, is the study of E0-semigroups and the study of

product systems the same ?

This was answered in the affirmative when P = [0,∞) by Arveson. Arveson’s first

proof makes essential use of the C∗-algebra, called the spectral C∗-algebra of E, associated

to the product system E and a deep analysis of its state space. Later Skeide in [30] found

a much simpler proof. Arveson himself found a simpler proof in [8].

Imitating Arveson’s proof in [8], the author and Murugan, have shown in [21] and [19],

that the above question has an affirmative answer when

(1) P is isomorphic to a finitely generated subsemigroup of Zd, and

(2) when P is a closed convex cone in Rd which is pointed and spanning.

The proof of (1) and (2) are essentially the same. But at the time of writing, it was not

clear how to bring both proofs under a common framework. Now it is possible to unify

the proofs and this was carried out in the first draft of Murugan’s thesis.

For what kind of semigroups, the map

α→ Eα

is a bijection between the class of E0-semigroups and the class of product systems ? Is

the statement true for the semigroup of natural numbers with mutliplication ? Note that

the semigroup of natural numbers with multiplication is not finitely generated as there

are infinitely many primes.

It is relatively simple to prove that a product system with a unit, over an Ore semi-

group, is isomorphic to a product system of an E0-semigroup. The construction is based

on an inductive limit procedure and is due to Arveson. To explain this construction, we

need to talk about representations of product systems.

Definition 9.14. Let E be a product system over P . Suppose H is a separable Hilbert

space and φ : E → B(H) is a map. We say that φ is a representation of E on H if

(1) the map φ is measurable,

(2) for x ∈ P , u, v ∈ E(x), φ(v)∗φ(u) = 〈u|v〉, and

(3) for x, y ∈ P , u ∈ E(x) and v ∈ E(y), φ(uv) = φ(u)φ(v).

A representation φ is called essential if [φ(E(x))H] = H for every x ∈ P .

Let E be a product system over P .

Lemma 9.15. Suppose φ : E → B(H) is a representation. Then φ restricted to each

fibre is linear.
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Proof. Fix x ∈ P . Let u, v ∈ E(x) be given. Set T = φ(u + v) − φ(u) − φ(v). For

w ∈ E(x), ξ, η ∈ H, calculate as follows to observe that

〈Tξ|φ(w)η〉 = 〈φ(u+ v)ξ|φ(w)η〉 − 〈φ(u)ξ|φ(w)η〉 − 〈φ(v)ξ|φ(w)η〉

= 〈φ(w)∗φ(u+ v)ξ|η〉 − 〈φ(w)∗φ(u)ξ|η〉 − 〈φ(w)∗φ(v)ξ|η〉

= 〈u+ v|w〉〈ξ|η〉 − 〈u|w〉〈ξ|η〉 − 〈v|w〉〈ξ|η〉

= 0.

Thus Tξ is orthogonal to every vector of the form φ(w)η, w ∈ E(x), η ∈ H. But Tξ is a

linear combination of such vectors. Thus 〈Tξ|Tξ〉 = 0 for every ξ ∈ H. This proves that

T = 0. This implies that φ is additive. In a similar fashion, the fact that φ preserves

scalar multiplication can be proved. 2

Let E be a product system over P and φ : E → B(H) be a representation. For

x ∈ P , note that Condition (2) of Defn. 9.14 and Lemma 9.15 imply that φ(E(x))

is an intertwining space. For x ∈ P , let αx be the unique normal endomorphism of

B(H) whose intertwining space is φ(E(x)). Condition (3) of Defn. 9.14 implies that

[φ(E(x))φ(E(y))] = φ(E(xy)). Lemma 9.1 implies that αx ◦ αy = αxy. Thus αφ :=

{αx}x∈P is a semigroup of normal endomorphisms. Note that αx is unital if and only if

[φ(E(x))H] = H. Thus αφ is a semigroup of unital normal endomorphisms if and only

if φ is essential.

Assume that φ is essential. Let d be the dimension function of E and choose a sequence

{ek} of measurable sections such that

(1) for x ∈ P , {ek(x)}d(x)
k=1 is an orthonormal basis for E(x), and

(2) ek(x) = 0 if k > d(x).

Note that for x ∈ P and A ∈ B(H),

αx(A) =

d(x)∑
k=1

φ(ek(x))Aφ(ek(x))∗.

The above equation together with the measurability of φ imply that for A ∈ B(H),

ξ, η ∈ H, the map P 3 x → 〈αx(A)ξ|η〉 ∈ C is measurable. Now Theorem 7.1 implies

that αφ is an E0-semigroup. By definition, φ is an isomorphism between E and the

product system associated to αφ.

Thus the question of Arveson is equivalent to the following question.

Question: Let E be a product system over P . Does E admit an essential represen-

tation on a separable Hilbert space ?

We pose another interesting question that is worth investigating. It is easy to see

that every product system always has a representation “the left regular representation”.
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Suppose E is a product system. Let H := L2(P,E) where the measure that we take on

P is a left Haar measure on G. For x ∈ P and u ∈ E(x), define a bounded operator

φ(u) on L2(E) by the following formula:

(9.5) φ(u)(f)(y) :=


uf(x−1y) if x−1y ∈ P,

0 if x−1y /∈ P.

It is routine to verify that φ is a representation of E.

For f ∈ L1(E), define

φ(f) :=

∫
φ(f(x))dx.

Definition 9.16. The spectral C∗-algebra of E, denoted C∗(E), is defined as the C∗-

algebra generated by {φ(f) : f ∈ L1(E)}.

Let us understand the spectral C∗-algebra when E is the trivial product system, i.e.

each fibre is C and the multiplication rule is the usual multiplication. Assume further

more that G and P are discrete. In this case, we can identify L2(E) with `2(P ). Let

V := {Va}a∈P be the “left” regular representation of P on `2(P ). Then C∗(E) is the C∗-

algebra generated by {Va}a∈P and it is denoted by C∗red(P ). The C∗-algebra C∗red(P ) is

called the reduced C∗-algebra of the semigroup P . The study of semigroup C∗-algebras

and the computation of the associated K-groups have received much attention in the

recent years. We refer the reader to [10] for a more comprehensive account of the theory

of semigroup C∗-algebras.

In the continuous case, when the semigroup P is Ore, i.e. P−1P = G = PP−1, the

spectral C∗-algebra associated to the trivial product system is called the Wiener-Hopf

algebra and is denoted W(P ). The systematic study of the Wiener-Hopf algebra from

the groupoid perspective was initiated in [18] and further developed by Nica in [22] and

Hilgert and Neeb in [13].

Taking mileage out of the groupoid approach to Wiener-Hopf algebras, the following

statements were established.

(1) Let P be a polyhedral cone in Rd. Then the K-groups ofW(P ) vanish. This was

proved by Alldridge in [2].

(2) Let P be a symmetric cone in a Euclidean space. Then the K-groups of W(P )

vanish. This was proved by the author in [33] by appealing to the theory of

Jordan algebras. A prototypical example of a symmetric cone is the cone of

positive matrices in the space of symmetric matrices. For more on symmetric

cones and Jordan algebras, the reader is referred to [11].
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Question: Suppose P is either a polyhedral or a symmetric cone and E is a product

system over P . Is Ki(C
∗(E)) = 0 for i = 0, 1?

The answer is yes in the one dimensional case. This was due to Zacharias([38]) for

type II product sytems and Hirshberg([14]) for general product systems.

Remark 9.17. The vanishing results of the K-groups of the Wiener-Hopf algebras in the

higher dimensional case makes essential use of the groupoid realisation of the Wiener-

Hopf algebras. In view of this, it is of intrinsic interest to know wheter C∗(E) has a

groupoid realisation or not when the fibres are infinite dimensional.

10. Arveson’s Inductive limit construction

We show, in this section, that if the product system contains a unit, then it always

has an essential representation on a separable Hilbert space for nice semigroups. This

construction is due to Arveson and is based on an inductive limit procedure. Inductive

limit constructions work well when the semigroup P is Ore.

First let us define the notion of units. Product systems are bundles of Hilbert spaces.

The classical Serre-Swan theorem asserts that knowing a vector bundle over a compact

space is equivalent to knowing its sections. Keeping this mind, it is natural to look at

sections of a product system. But a product system is more than just a bundle and

it has a product structure. Thus, one is naturally led to look for sections which are

multiplicative. This leads us to the notion of a unit.

Definition 10.1. Let E be a product system over P . By a unit of E, we mean a family

{ux}x∈P such that

(1) for x ∈ P , ux ∈ E(x) and ux 6= 0,

(2) for x, y ∈ P , uxy = uxuy, and

(3) the map P 3 x→ ux ∈ E is measurable.

A unit is thus a nowhere vanishing measurable section which is multiplicative. We

must mention here that there are uncountably many examples of one parameter product

systems which do not have any unit. A product system is said to be spatial if it possesses

a unit.

Let us now recall the notion of a right Ore semigroup. The semigroup P is said to be

right Ore in G if PP−1 = G. Suppose that P is right Ore in G. Note that ΩΩ−1 = G.

For x, y ∈ G, we write x ≤ y if there exists a ∈ P such that y = xa. Similarly, we write

x < y if y = xa for some a ∈ Ω. Note that ≤ is a pre-order on G.

Examples listed in the beginning of Chapter 3 are right Ore. An example of a semi-

group which is not Ore is the free semigroup on n generators. Let Fn be the free group
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on n generators and let {a1, a2, · · · , an} be the generators. Words in {a1, a2, · · · , an}
form a semigroup which we denote by F+

n . Then F+
n is not Ore in Fn.

Lemma 10.2. Let P be right Ore in G. Given x, y ∈ G, there exists z ∈ G such that

z ≥ x, y.

Proof. Let x, y ∈ G be given. It suffices to show that xP ∩ yP 6= ∅. Choose a, b ∈ P
such that x−1y = ab−1. Then xa = yb. Thus xP ∩ yP 6= ∅. This completes the proof. 2

For the rest of this section, we assume that PP−1 = G. Before we describe Arveson’s

inductive limit construction, let us review the construction of the inductive limit of

Hilbert spaces.

Let Λ be a directed set. Suppose ({Hα}α∈Λ, {Vβα}) is a directed system of Hilbert

spaces, i.e.

(1) for every α ∈ Λ, Hα is a Hilbert space

(2) for α ≤ β, the map Vβα : Hα → Hβ is an isometry, and

(3) the isometries {Vβα} satisfy the following compatibility relation: for α ≤ β ≤ γ,

VγβVβα = Vγα.

Suppose we are given a directed system of Hilbert spaces as above. We claim that there

exists a Hilbert space H∞ and isometries iα : Hα → H∞ with the following properties.

(a) For α ≤ β, iβVβα = iα, and

(b) The union
⋃
α iαHα is dense in H∞.

Consider the set H := {(ξ, α) : ξ ∈ Hα, α ∈ Λ}. Define an equivalence relation on

H as follows: Let (ξ, α), (η, β) ∈ H be given. We say that (ξ, α) ∼ (η, β) if there exists

γ ≥ α, β such that Vγαξ = Vγβη. Verify that ∼ is an equivalence relation on H. Then

H has an inner product structure where the addition, scalar multiplication and inner

product are given as follows:

[(ξ, α)] + [(η, β)] = [(Vγαξ + Vγβη, γ)]

λ[(ξ, α)] = [(λξ, α)]

〈[(ξ, α)]|[(η, β)]〉 = 〈Vγαξ|Vγβη〉

where γ is any element such that γ ≥ α, β. We let H∞ be the completion of H. Let

iα : Hα → H∞ be defined by iα(ξ) = [(ξ, α)]. It is clear from the definition that iα is an

isometry and
⋃
α iαHα is dense in H∞. It follows from the defintion that Vβαiα = iβ if

β ≥ α.

Exercise 10.1. Suppose there exists another Hilbert space H̃∞ and isometries jα : Hα →
H̃∞ such that jβVβα = jα and

⋃
α jαHα is dense in H̃∞. Show that there exists a unique

unitary U : H∞ → H̃∞ such that U ◦ iα = jα.
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In view of the above Exercise, we can talk about “the inductive limit” of the system

({Hα}α∈Λ, {Vβα}).

Exercise 10.2. Let H∞ be the inductive limit of the Hilbert spaces Hα with connecting

isometries {Vβα}. Suppose K is another Hilbert space and for each α ∈ Λ, there exists a

bounded linear map Tα : Hα → K such that TβVβα = Tα and supα ||Tα|| <∞. Show that

there exists a unique bounded linear map T : H∞ → K such that T ◦ iα = Tα.

For our purposes, it is important to know under what conditions the inductive limit

of separable Hilbert spaces is separable. Let Λ be a directed set and J be a subset of Λ.

We say that J is cofinal in Λ if given α ∈ Λ there exists β ∈ J such that β ≥ α. Let

({Hα}α∈Λ, {Vβα}) be a directed system of Hilbert spaces. Denote the inductive limit by

H∞.

Lemma 10.3. Keep the foregoing notation. Assume that Hα is separable for each α ∈ Λ.

Suppose there exists a countable subset J of Λ such that J is cofinal in Λ. Then H∞ is

separable.

Proof. For β ∈ J , let Dβ be a countable dense subset of Hβ. Observe that if α ≤ β

then iαHα ⊂ iβHβ. Note that the cofinality of J implies that
⋃
α∈Λ iαHα =

⋃
β∈J iβHβ.

But
⋃
β∈J iβHβ is dense in H∞ and Dβ is dense in Hβ. Consequently, the countable set⋃

β∈J iβ(Dβ) is dense in H∞. This completes the proof. 2

For the rest of this section, assume that P is right Ore, i.e. PP−1 = G. Observe that

Ω is an ideal in P , i.e. ΩP ⊂ Ω and PΩ ⊂ Ω. Also note that ΩΩ−1 = G.

Lemma 10.4. The directed set (G,≤) admits a countable cofinal set D such that D ⊂ Ω.

Proof. Observe that G = ΩΩ−1. This implies that {aΩ−1 : a ∈ Ω} is an open cover of

G. But G is second countable. Thus the cover {aΩ−1 : a ∈ Ω} has a countable subcover.

Let a1, a2, · · · be a sequence in Ω such that
⋃∞
n=1 anΩ−1 = G. Set D = {an : n ∈ N}.

Then D is cofinal in G. This completes the proof. 2

Lemma 10.5. There exists Borel maps s, t : G→ Ω such that g = s(g)t(g)−1 for every

g ∈ G.

Proof. Let an be a sequence in Ω such that
⋃
n anΩ−1 = G. Let An = anΩ−1 and

Bn be the “disjointification” of An, i.e. define Bn inductively as follows: B1 = A1,

Bn = An\ ∪n−1
i=1 Bi. Then Bn forms a disjoint family of measurable subsets of G and∐∞

n=1 Bn = G. Define the map s : G → Ω such that s(g) = an if g ∈ Bn. Clearly s is

measurable. Define t : G→ G by t(g) = g−1s(g). Clearly if g ∈ Bn, g−1s(g) ∈ Ω. Thus

the range of t is contained in Ω. It is clear that t is measurable and g = s(g)t(g)−1 for

every g ∈ G. This completes the proof. 2
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Proposition 10.6. Let E be a spatial product system over P . Then there exists a unit

{ux}x∈P of E such that 〈ux|ux〉 = 1 for every x ∈ P .

Proof. Let v := {vx}x∈P be a unit of E. Define χ(x) = 〈vx|vx〉 for x ∈ P . Since v is

nowhere vanishing, it follows that χ takes values in the multiplicative group (0,∞). Let

x, y ∈ P be given. Calculate as follows to observe that

χ(xy) = 〈vxy|vxy〉

= 〈vxvy|vxvy〉

= 〈vx|vx〉〈vy|vy〉

= χ(x)χ(y).

Thus χ is a homomorphism. For x ∈ P , set ux := (χ(x))−
1
2vx. Then u := {ux}x∈P is a

unit with the desired property. 2

Let E be a spatial product system and u := {ux}x∈P be a unit such that 〈ux|ux〉 = 1

for every x ∈ P . Consider the directed set (P,≤). For x ∈ P , consider the Hilbert space

E(x) and for x ≤ y, let Vy,x : E(x)→ E(y) be the isometry defined by Vy,x(e) = eux−1y.

Then ({E(x)}x∈P , {Vy,x}) is a directed system of Hilbert spaces. Denote the inductive

limit by H. For x ∈ P , let ix be the inclusion of E(x) into H. By Lemma 10.3 and by

Lemma 10.4, it follows that H is separable.

Let x ∈ P and e ∈ E(x) be given. Let φ(e) be the unique bounded linear operator onH
such that φ(e)iy(f) = ixy(ef) for y ∈ P and f ∈ E(y). The existence of such a bounded

operator on H is guaranteed by Exercise 10.2. It is clear that for x ∈ P , e, ẽ ∈ E(x),

φ(ẽ)∗φ(e) = 〈e|ẽ〉. Also for x, y ∈ P and e ∈ E(x), f ∈ E(y), φ(ef) = φ(e)φ(f).

We claim that for x ∈ P , φ(E(x))H is total in H. Fix x ∈ P . Let y ≥ x be given.

Write y = xa with a ∈ P . Suppose f ∈ E(y). It suffices to prove that iy(f) ∈ φ(E(x))H.

Since E(x)E(a) is dense in E(y), it suffices to verify when f is of the form f = eu where

e ∈ E(x) and u ∈ E(a). Then clearly iy(f) = φ(e)ia(u). Thus iy(E(y)) is contained

in φ(E(x))H. But {iy(E(y)) : y ≥ x} is total in H. As a consequence, it follows that

φ(E(x))H is total in H. This proves our claim.

Thus the only non trivial thing that requires proof is the measurability of φ. First, we

need a lemma.

Lemma 10.7. Let E be a product system and let φ : E → B(H) be a map satisfying (2)

and (3) of Definition 9.14. Then the following are equivalent.

(1) The map φ is measurable.

(2) For every Borel section s of E, φ ◦ s is weakly measurable.
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Proof. It is clear that (1) implies (2). Assume that (2) holds. Let d be the dimension

function of E. Suppose {uk}∞k=1 is a sequence of Borel sections such that if k > d(x),

uk(x) = 0 and {uk(x)}d(x)
k=1 forms an orthonormal basis for E(x). Denote the projection

of E onto P by p.

Note that for every k, the map E 3 u → 〈u|uk(p(u))〉 ∈ C is measurable. Observe

that for u ∈ E,

u =

d(p(u))∑
k=1

〈u|uk(p(u))〉uk(p(u)).

Since φ restricted to each fibre is a bounded linear map, it follows that for u ∈ E,

φ(u) =

d(p(u))∑
k=1

〈u|uk(p(u))〉φ(uk(p(u))).

The hypothesis imply that φ(uk(p(u))) is measurable for every k. The above expression

together with the fact that u → 〈u|uk(p(u))〉 is measurable for each k imply that φ is

measurable. This completes the proof. 2

Let us now return to the discussion preceding Lemma 10.7. Keep the notation used

in the discussion preceding Lemma 10.7. We claim that the map φ is measurable. Let

e : P → E be a measurable section. It suffices to show that for y, z ∈ P and f ∈ E(y),

g ∈ E(z), the map P 3 x→ 〈φ(e(x))iy(f)|iz(g)〉 ∈ C is measurable. Let s and t be the

maps constructed in Lemma 10.5.

Calculate as follows to observe that for x ∈ P ,

〈φ(e(x))iy(f)|iz(g)〉 = 〈ixy(e(x)f)|iz(g)〉

= 〈ixyt(z−1xy)(e(x)fut(z−1xy)|izs(z−1xy)(gus(z−1xy))〉

= 〈e(x)fut(z−1xy)|gus(z−1xy)〉 (since xyt(z−1xy) = zs(z−1xy)).

The above expression clearly indicates that x→ 〈φ(e(x))iy(f)|iz(g)〉 is measurable. This

is because multiplication and taking inner products are measurable operations. Thus φ

is a representation. We can summarise the above as follows.

Theorem 10.8. Suppose E is a spatial product system over a right Ore semigroup. Then

E admits an essential representation.

11. Pure E0-semigroups

For reasons, that are not clear to the author, a class of E0-semigroups that are consid-

ered important are called pure E0-semigroups. In the last two sections, we discuss pure

E0-semigroups and standard forms of E0-semigroups. In particular, we discuss Alevras’

work on standard forms of spatial E0-semigroups. For the rest of this notes, we assume
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that P is right Ore, i.e. PP−1 = G. Recall that we say for x, y ∈ G, x ≤ y (x < y) if

x−1y ∈ P (x−1y ∈ Ω). The fact that P is right Ore implies that (G,≤) and (P,≤) are

directed sets.

Definition 11.1. Let α := {αx}x∈P be an E0-semigroup. We say that α is pure if⋂
x∈P

αx(B(H)) = C.

We proceed towards deriving an equivalent definition in terms of normal states of

B(H).

Lemma 11.2. Let α : B(H) → B(H) be a unital normal endomorphism. Then the

image α(B(H)) is a von Neumann subalgebra of B(H).

Proof. Write α as α(A) =
∑d

i=1 ViAV
∗
i where {Vi}di=1 is a family of isometries with

orthogonal range projections. Let (Bj) be a net in α(B(H)) such that Bj → B in

the σ-weak topology. Write Bj = α(Aj). Note that V ∗1 BjV1 = V ∗1 α(Aj)V1 = Aj and

V ∗1 BjV1 → V ∗1 BV1. As a consequence, it follows that Aj converges and let A be the

limit. Since α is normal, it follows that α(Aj) → α(A). Thus B = α(A). This shows

that α(B(H)) is σ-weakly closed. Hence the proof. 2

Let Λ be a directed set. For α ∈ Λ, let Mα be a unital von Neumann subalgebra of

B(H). Assume that Mα is decreasing, i.e. Mα ⊂ Mβ if α ≥ β. Denote the intersection⋂
α∈ΛMα by M∞.

Lemma 11.3. Let ω be a normal functional on B(H). Then

||ω|M∞|| = inf
α∈Λ
||ω|Mα ||.

Proof. Since M∞ ⊂ Mα for every α, it follows that ||ω|M∞|| ≤ ||ω|Mα|| for every α.

Thus, it follows that ||ω|M∞|| ≤ inf
α∈Λ
||ω|Mα ||. Suppose the inequality is strict. Choose a

number C in between. Then for every α ∈ Λ, C < ||ω|Mα||. Thus there exists xα ∈ Mα

such that ||xα|| = 1 and |ω(xα)| > C. The unit ball of B(H) is σ-weakly compact. By

passing to a subnet, if necessary, we can assume that xα converges to a point x ∈ B(H),

of norm at most 1, in the σ-weak topology. However {Mα} is decreasing and Mα is

σ-weakly closed. This implies that x ∈Mα for each α. Thus x ∈M∞.

Taking limit in the inequality |ω(xα)| > C, we obtain ||ω|| ≥ ||ω(x)|| ≥ C which is a

contradiction to our assumption that C > ||ω|M∞||. Hence

||ω|M∞|| = inf
α∈Λ
||ω|Mα||.

This completes the proof. 2
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Lemma 11.4. Let A and B be C∗-algebras and let π : A → B be a sujrective ∗-
homomorphism. Then π maps the unit ball of A onto the unit ball of B.

Proof. Since π is contractive, it follows that ||π(a)|| ≤ 1 if ||a|| ≤ 1. Let b ∈ B be such

that ||b|| ≤ 1.

Case 1: Suppose that b is self-adjoint. Since π is surjective, there exists a ∈ A such

that π(a) = b. Replacing a by a+a∗

2
, we can assume that there exists a self-adjoint

element a ∈ A such that π(a) = b. Let f : R→ R be defined as

f(x) :=


x if |x| ≤ 1,

1 if x > 1,

−1 if x < −1.

Note that f(a) is of norm at most 1 and π(f(a)) = f(π(a)) = f(b) = b.

Case 2: Let b ∈ B be such that ||b|| ≤ 1. Amplify A, B and π by 2× 2 matrices. The

element

[
0 b∗

b 0

]
is self-adjoint and has norm at most 1. Thus there exists a self-adjoint

2 × 2 matrix over A, say,

[
a11 a12

a21 a22

]
of norm at most 1 such that π

([a11 a12

a21 a22

])
=[

0 b∗

b 0

]
. Note that a21 has norm at most 1 and π(a21) = b. This completes the proof. 2

Let α := {αx}x∈P be an E0-semigroup on B(H). For x ∈ P , let βx be the linear map

on L1(H) such that for T ∈ L1(H) and A ∈ B(H),

Tr(βx(T )A) = Tr(Tαx(A)).

Note that βx ◦ βy = βyx for x, y ∈ P . Recall that (P,≤) is a directed set. For x ∈ P ,

let Mx = αx(B(H)). Note that {Mx}x∈P is a decreasing net of von Neumann algebras.

Denote its intersection by M∞.

Proposition 11.5. Keep the foregoing notation. Then the following are equivalent.

(1) The E0-semigroup α is pure.

(2) For every pair of normal states ρ1 and ρ2 of B(H), the net (||ρ1◦αx−ρ2◦αx||)x∈P
converges to 0.

(3) For postive trace class operators T1, T2 with trace 1, the net (||βx◦T1−βx◦T2||)x∈P
converges to 0.

Proof. The equivalence between (2) and (3) is obvious. Assume that (1) holds. Let ρ1

and ρ2 be normal states on B(H). Set λ = ρ1 − ρ2. Observe that for x ∈ P , by Lemma
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11.4, we have the equality

||ρ1 ◦ αx − ρ2 ◦ αx|| = ||λ ◦ αx|| = ||λ|Mx||.

By Lemma 11.3, the net (||λ|Mx||)x∈P decreases to ||λ|M∞||. But M∞ = C and λ vanishes

on M∞. Hence ||ρ1 ◦ αx − ρ2 ◦ αx|| = ||λ|Mx|| → 0. Thus we have proved (1) =⇒ (2).

Now suppose that (2) holds. By the Hahn-Banach theorem, it suffices to show that

if T is a trace class operator with trace zero, then Tr(TA) = 0 for every A ∈ M∞.

Let T be such an operator. We can write T = T1 + iT2 with T1, T2 self-adjoint. Hence

Tr(T1) = 0 = Tr(T2). Thus, we can assume that T is self-adjoint. Let T+ and T− be the

positive and the negative parts of T . Thus Tr(T+) = Tr(T−). By rescaling, if necessary,

we can assume Tr(T+) = 1. Let ρ+ and ρ− be the normal states on B(H) associated to

T+ and T− respectively.

By Lemma 11.3, Lemma 11.4 and the hypothesis, we conclude that ||(ρ+−ρ−)|M∞|| =
0. Thus ρ+ − ρ− vanishes on M∞. In other words, Tr(TA) = 0 for every A ∈ M∞.

Hence M∞ = C. Thus the implication (2) =⇒ (1) is proved. 2

Keep the foregoing notation.

Definition 11.6. Let ω be a normal state on B(H). We say that ω is absorbing for the

E0-semigroup α if for every normal state ρ, the net (||ρ ◦ αx − ω||)x∈P converges to 0.

Let ω be a normal state on B(H) and T be the trace class operator that corresponds

to ω. Then ω is absorbing if and only if for every positive trace class operator S with

Tr(S) = 1, we have (βx ◦ S)x∈P → T . An absorbing state is invariant. To see this,

suppose ω is an absorbing state and T be the trace class operator associated to it. Then

βx ◦ T → T . Fix a ∈ P . Since βa is continuous, it follows that βa(βx(T )) = βxa(T ) →
βa(T ). But {xa : x ∈ P} is cofinal in P . Thus (βxa(T ))x∈P → T . As a consequence, we

obtain βa(T ) = T . In other words, ω ◦ αa = ω for every a ∈ P .

Remark 11.7. Note that Prop.11.5 implies that if an E0-semigroup has an absorbing

state then it is pure. But, it is not true that every pure E0-semigroup has an absorbing

state. We refer the reader to Section 7.3 of [7]. If α is a pure E0-semigroup and ω is an

invariant normal state then ω is absorbing for α.

Next we show that CCR flows associated to a pure isometric representation is pure.

Let V : P → B(H) be an isometric representation. We say that the representation V is

pure if
⋂
x∈P

VxH = {0}.

Exercise 11.1. Let V : P → B(H) be an isometric representation. The following

conditions are equivalent.
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(1) The representation V is pure.

(2) The net (V ∗x )x∈P → 0 in SOT.

(3) The net (Ex)x∈P → 0 in SOT where Ex = VxV
∗
x .

Here is an example of a pure isometric representation.

Example 11.8. Let A be a P -module and let V be the isometric representation associated

to the module A. If A 6= G, then V is pure.

Proof. Suppose g ∈
⋂
x∈P VxH. Then g ⊥ Ker(V ∗x ) = L2(A\xA). We claim that⋂

x∈P xA = ∅. Suppose z ∈
⋂
x∈P xA. Then x−1z ∈ A for every x ∈ P . But A is a

P -module and PP−1 = G. Thus G = Gz = PP−1z ⊂ PA ⊂ A which is a contradiction.

This proves our claim.

Let φ be a compactly supported continuous function on A and K be its support. Note

that {K ∩ xA}x∈P is a decreasing family of compact sets having empty intersection.

Thus there exists x ∈ P such that K ∩ xA = ∅. In other words, K ⊂ A\xA. Then

φ ∈ L2(A\xA). Consequently, 〈g|φ〉 = 0. Since Cc(A) is dense in L2(A), it follows that

g = 0. This completes the proof. 2

Our next proposition states that CCR flows associated to pure isometric representa-

tions are pure. For an isometric representation V of P on H, let αV be the CCR flow

associated to V . Denote the vacuum vector of the symmetric Fock space Γ(H) by v and

the vector state B(Γ(H)) 3 A→ 〈Av|v〉 ∈ C by ω.

Proposition 11.9. Suppose V is a pure isometric representation. Then the associated

CCR flow αV is pure and the vector state given by the vacuum vector is absorbing for

αV .

Proof. We simply denote αV by α := {αx}x∈P . The CCR relations imply that for x ∈ P
and ξ ∈ Ker(V ∗x ), η ∈ H, W (ξ)W (Vxη) = W (Vxη)W (ξ). This has the consequence that

{W (ξ) : ξ ∈ Ker(Vx)∗} is contained in the commutant of αx(B(Γ(H))). Note that the

map H 3 ξ → W (ξ) is continuous when H is given the norm topology and B(Γ(H))

is given the strong operator topology. The representation {Vx}x∈P is pure is equivalent

to the fact that the increasing union
⋃
x∈P Ker(Vx)

∗ is dense in H. The discussion so

far imply that {W (ξ) : ξ ∈ H} is contained in the strong closure of
⋃
x∈P αx(B(Γ(H)))

′
.

But the linear span of {W (ξ) : ξ ∈ H} is strongly dense in B(Γ(H)). Thus it follows

that
⋃
x∈P αx(B(Γ(H)))

′
is strongly dense in B(Γ(H)). Taking commutant, we obtain⋂

x∈P αx(B(Γ(H))) = C. Thus α is pure.

Since α is pure, to show that the vector state, denote ω, given by the vacuum vector

e(0) is absorbing for α, it suffices to show that it is invariant. A direct calculation reveals
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that for x ∈ P and ξ ∈ H,

〈αx(W (ξ))e(0)|e(0)〉 = 〈W (ξ)e(0)|e(0)〉.

The invariance of ω follows from the fact that αx is normal and the linear span of Weyl

operators is σ-weakly dense in B(Γ(H)). This completes the proof. 2

12. Standard form

In this section, we discuss Alevras’ work ([1]) on standard forms of E0-semigroups. For

a unit vector ξ ∈ H, we denote the corresponding vector state by ωξ, i.e. for A ∈ B(H),

ωξ(A) = 〈Aξ|ξ〉.

Definition 12.1. Let α := {αx}x∈P be an E0-semigroup on B(H). We say that α is

in standard form if there exists a unit vector ξ ∈ H such that ωξ is absorbing for α.

Equivalently, there exists a unit vector ξ ∈ H such that ωξ is α-invariant and α is pure.

Let α be a normal unital endomorphism of B(H) and ξ be a unit vector. Denote the

intertwining space of α by E. With the foregoing notation, we have the following.

Lemma 12.2. The following are equivalent.

(1) The state ωξ is α-invariant, i.e. for A ∈ B(H), ωξ(α(A)) = ωξ(A).

(2) The vector ξ is a common eigen vector for {T ∗ : T ∈ E}

Proof. Suppose that (1) holds. Define an operator S : H → H by SAξ = α(A)ξ

for A ∈ B(H). The fact that ωξ is α-invariant implies that S is well defined. A direct

calculation reveals that S ∈ E. Note that Sξ = ξ. Let T ∈ E be given. Now T ∗ξ =

T ∗Sξ = 〈S|T 〉ξ. Thus ξ is an eigen vector of T ∗. Thus the implication (1) =⇒ (2) is

proved.

Now suppose (2) holds. Write α(A) =
∑d

i=1 ViAV
∗
i where {Vi}di=1 is a family of

isometries with orthogonal range projections. Let λi ∈ C be such that V ∗i ξ = λiξ. Note

that

1 = ωξ(1) = ωξ(
d∑
i=1

ViV
∗
i ) =

d∑
i=1

〈ViV ∗i ξ|ξ〉 =
d∑
i=1

|λi|2〈ξ|ξ〉 =
d∑
i=1

|λi|2.

Let A ∈ B(H) be given. Observe that

ωξ(α(A)) =
d∑
i=1

〈ViAV ∗i ξ|ξ〉 =
d∑
i=1

〈AV ∗i ξ|V ∗i ξ〉 =
d∑
i=1

|λi|2〈Aξ|ξ〉 = 〈Aξ|ξ〉.

Thus ωξ is α invariant. This completes the proof.

Keep the foregoing notation. Let Q be the orthogonal range projection onto the one

dimensional space spanned by ξ.
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Lemma 12.3. The projection onto the closed subspace Eξ is α(Q).

Proof. Write α(A) =
∑d

i=1 ViAV
∗
i . It is clear that for η ∈ H, α(Q)η =

∑d
i=1 ViQV

∗
i η ∈

Eξ. Let T ∈ E be given. Noting the fact that {Vi}di=1 is an orthonormal basis for E,

Observe that

α(Q)Tξ =
d∑
i=1

ViQV
∗
i Tξ =

d∑
i=1

〈T |Vi〉ViQξ = (
d∑
i=1

〈T |Vi〉Vi)ξ = Tξ.

This completes the proof. 2

Let α := {αx}x∈P be an E0-semigroup on B(H) and ξ be a unit vector. Denote the

projection onto the 1-dimensional subspace spanned by ξ by Q.

Proposition 12.4 (Powers). Keep the foregoing notation. Suppose that the net {αx(Q)}x∈P
converges to 1 in SOT. Then ωξ is absorbing for α.

Proof. Let Qx := αx(Q). We write ω in place of ωξ. Consider a normal state ρ of

B(H). Calculate as follows to observe that, for A ∈ B(H),

|ρ ◦ αx(A)− ω(A)|

= |ρ(αx(QAQ+QA(1−Q) + (1−Q)AQ+ (1−Q)A(1−Q)))− ω(A)|

= |ω(A)ρ(Qx) + ρ(Qxαx(A)Q⊥x ) + ρ(Q⊥x αx(A)Qx) + ρ(Q⊥x αx(A)Q⊥x )− ω(A)|

≤ |ω(A)||ρ(Q⊥x )|+ 3||A||ρ(Q⊥x )
1
2 ( by the Cauchy-Schwarz inequality for states)

≤ 4||A||ρ(Q⊥x )
1
2 .

Thus ||ρ ◦αx−ω|| ≤ 4ρ(1−Qx)
1
2 . But Qx converges strongly to 1. Thus ρ(Qx)→ 1. As

a consequence, we obtain ||ρ ◦αx−ω|| → 0. Hence ω is absorbing for α. This completes

the proof. 2

Let α := {αx}x∈P be an E0-semigroup on B(H) and let ξ ∈ H be a unit vector.

Suppose that ωξ is invariant. For x ∈ P , let Sx : H → H be the bounded operator

defined by the equation

(12.6) SxAξ = αx(A)ξ.

The fact that ωξ is invariant implies that Sx is well defined. It is clear that Sx ∈ E(x)

where E := {E(x)}x∈P is the product system of α. It is routine to verify that SxSy = Sxy

and 〈Sx|Sx〉 = 1. In other words {Sx}x∈P is a unit for the product system E. Thus E0-

semigroups which are cocycle conjugate to one in standard form is always spatial.

Proposition 12.5. Keep the foregoing notation. The following are equivalent.

(1) The vector state ωξ is absorbing for α.

(2) The vector ξ is cyclic, i.e. the increasing union
⋃
x∈P E(x)ξ is dense in H.
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(3) The net {αx(Q)}x∈P converges to 1 in SOT where Q is the projection onto the

one dimensional space spanned by ξ.

Proof. The equivalence between (2) and (3) follows from Lemma 12.3. That (3) =⇒
(1) follows from Prop. 12.4. Now suppose that (1) holds. Let {Sx}x∈P be the unit

given by Eq. 12.6. First observe that {E(x)ξ : x ∈ P} is an increasing family of closed

subspaces. To see this, let x, y ∈ P be such that y = xa for some a ∈ P . Then

E(x)ξ = E(x)Saξ ⊂ E(y)ξ.

Let R be the projection onto the closure of
⋃
x∈P E(x)ξ. Note that E(x) leaves Ran(R)

invariant for every x ∈ P . Fix x ∈ P and let T ∈ E(x) be given. We claim that T ∗ leaves

Ran(R) invariant. It suffices to show that T ∗ leaves the dense subspace
⋃
x∈P E(x)ξ

invariant. Let η ∈
⋃
x∈P E(x)ξ be given. We can assume, without loss of generality,

that there exists y ≥ x such that η ∈ E(y)ξ. Write y = xa. Then T ∗E(y) ⊂ E(a).

Hence T ∗η ⊂ E(a)ξ ⊂ Ran(R). Thus, for every x ∈ P , E(x) and E(x)∗ leaves Ran(R)

invariant. As a consequence, E(x) and E(x)∗ commutes with R for every x ∈ P .

Fix x ∈ P and let {Vi}di=1 be an orthonormal basis for E(x). We have just seen that

V ∗i commutes with R for every i. Thus αx(R) =
∑d

i=1 ViRV
∗
i = (

∑d
i=1 ViV

∗
i )R = R. As

a consequence, R is left invariant by αx for every x ∈ P . But ωξ is absorbing for α which

forces that α is pure. Hence R = Id. This completes the proof. 2

Summarising, we have the following.

Proposition 12.6. The E0-semigroup α is in standard form if and only if there exists

a unit vector ξ ∈ H such that

(1) for x ∈ P , ξ is a common eigen vector for {T ∗ : T ∈ E(x)}, and

(2) the increasing union
⋃
x∈P E(x)ξ is dense in H.

We have seen that an E0-semigroup in standard form is necessarily spatial, i.e. its

product system has a unit. The natural question to ask is if α is a spatial E0-semigroup,

is α cocycle conjugate to one in standard form? The answer is yes.

Let E be a product system and S := {Sx}x∈P be a unit such that 〈Sx|Sx〉 = 1.

Such units are called isometric units. Let φ be the representation of E constructed using

Arveson’s inductive limit procedure. We use the notation developed at the end of Chapter

4. Thus H is the inductive limit of the Hilbert spaces {E(x)}x∈P where the connecting

isometries Vy,x : E(x) → E(y) are given by Vy,x(e) = eSx−1y. Let ix : E(x) → H
be the natural inclusion. Let αS be the E0-semigroup on B(H) corresponding to the

representation φ. Pick x ∈ P and let ξ := ix(Sx). Note that ξ is independent of the

choice of x precisely because S is a unit.

Proposition 12.7. The E0-semigroup αS := {αx}x∈P is in standard form.
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Proof. Let x ∈ P and e ∈ E(x) be given. Note that φ(Sx)ξ = φ(Sx)iy(Sy) =

ixy(SxSy) = ixy(Sxy) = ξ. Calculate as follows to observe that

φ(e)∗ξ = φ(e)∗φ(Sx)ξ

= 〈Sx|e〉ξ.

Thus ξ is a common eigen vector for {φ(e)∗ : e ∈ E(x)} for every x ∈ P .

Observe that for e ∈ E(x), φ(e)ξ = φ(e)ie(λ) = λix(e) where λ is a scalar of modulus

1. Thus φ(E(x))ξ = ix(E(x)). By definition, the union
⋃
x∈P ix(E(x)) is dense in H.

The proof is completed by appealing to Prop. 12.6. 2

Let α := {αx}x∈P be an E0-semigroup on B(H). Suppose that α is in standard form

with the invariant vector state ωξ. Let S := {Sx}x∈P be the unit given by Eq. 12.6.

Lemma 12.8. Keep the foregoing notation. The E0-semigroups α and αS are conjugate.

Proof. Let H∞ be the inductive limit of the Hilbert spaces {E(x)}x∈P where the

connecting isometries Vy,x : E(x) → E(y) are given by Vy,x(e) = eSx−1y. Let ξ0 ∈ H∞
be defined by ξ0 = ix(Sx). Define U : H∞ → H by the equation U(ix(e)) = eξ. The

fact that such an operator can be defined is justified by Exercise 10.2. It is clear that

U preserves the inner product. Since
⋃
x∈P E(x)ξ is total in H, it follows that U is a

unitary.

Let φ : E → B(H∞) be the representation of E associated to the E0-semigroup αS.

Fix x ∈ P and e ∈ E(x). For f ∈ E(y), calculate as follows to observe that

Uφ(e)U∗fξ = Uφ(e)iy(f)

= Uixy(ef)

= efξ

= e(fξ).

Since {fξ : f ∈ E(y), y ∈ P} is total in H, it follows that Uφ(e)U∗ = e. This proves

that α and αS are conjugate. This completes the proof. 2

The final question that requires answering is the following. Suppose S and T are two

(isometric) units of a product system E. When is αS conjugate to αT ? To answer this,

we need to introduce the notion of a gauge group of a product system.

Definition 12.9. Let E be a product system over P . The set of automorphisms of E

form a group under composition and is called the automorphism group or the gauge group

of E. We denote the gauge group of E by Aut(E).

For explicit computation of gauge groups of CCR flows, we refer the reader to [7],

[3] and [4]. Note that the gauge group acts naturally on the set of units. Suppose
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u := {ux}x∈P is a unit and θ :=
∐

x∈P θx is an element in Aut(E), then {θxux}x∈P is a

unit.

Let E be a product system over P and let S := {Sx}x∈P and T := {Tx}x∈P be isometric

units. Let αS and αT be the E0-semigroups given by Arveson’s inductive limit procedure.

We decorate the Hilbert spaces, connecting isometries, the natural inclusions by S. For

instance, the Hilbert space on which αS acts will be denoted HS. Similarly for T . Let

φS be the representation of E on HS corresponding to S and φT , the representation

corresponding to T .

Proposition 12.10. Keep the foregoing notation. The following are equivalent.

(1) The E0-semigroups αS and αT are conjugate.

(2) There exists θ ∈ Aut(E) such that θ(S) = T .

Proof. Suppose that (1) holds. Let U : HS → HT be a unitary such that αTx =

Ad(U) ◦αSx ◦Ad(U∗). Let ξS := iSx(Sx) and ξT = iTx (Tx). Then ωξS ◦Ad(U∗) is absorbing

for αT . But absorbing states are unique. Thus ωξT = ωξS ◦ Ad(U∗). This has the

consequence that UξS is a scalar multiple of ξT . By rescaling, if necessary, we can

assume that UξS = ξT .

Define θ : E → E as follows: for x ∈ P and e ∈ E(x), let θx(e) := (φT )−1(UφS(e)U∗).

Clearly θ is an automorphism of E. For A ∈ B(HT ) and x ∈ P , calculate as follows to

observe that

UφS(Sx)U
∗AξT = UφS(Sx)U

∗AUξS

= UαSx (U∗AU)ξS

= UαSx (U∗AU)U∗ξT

= αTx (A)ξT

= φT (Tx)Aξ
T .

The above calculation implies that θ(S) = T . Thus the implication (1) =⇒ (2) is

proved.

Now assume that (2) holds. Choose θ ∈ Aut(E) such that θ(S) = T . Define U : HS →
HT by the equation UiSx(e) = iTx (θx(e)). The map U is well defined precisely because θ

maps S to T . It is clear that U is a unitary. Let x ∈ P , e ∈ E(x) be given. For y ∈ P
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and f ∈ E(y), calculate as follows to observe that

UφS(e)U∗iTy (f) = UφS(e)iSy (θ−1
y (f))

= UiSxy(eθ
−1
y (f))

= iTxy(θxy(eθ
−1
y (f))

= iTxy(θx(e)f)

= φT (θ(e))iTy (f).

Thus UφS(e)U∗ = φT (θ(e)) for every e ∈ E(x). For x ∈ P , note that the intertwining

space of Ad(U) ◦ αSx ◦ Ad(U)∗ is {UφS(e)U∗ : e ∈ E(x)} which equals {φT (f) : f ∈ E}
which is the intertwining space of αTx . Consequently, for x ∈ P ,

αTx = Ad(U) ◦ αSx ◦ Ad(U∗).

Thus the implication (2) =⇒ (1) is proved. This completes the proof. 2

The following is an immediate corollary of Prop. 12.8 and Prop. 12.10.

Corollary 12.11. Let α := {αx}x∈P and β := {βx}x∈P be E0-semigroups. Suppose α

and β are in standard form. Suppose that the gauge group of α and β acts transitively

on the respective set of units. Then α is cocycle conjugate to β if and only if α and β

are conjugate.

Remark 12.12. Tsirelson in [37] has constructed one parameter examples of E0-semigroups

whose gauge group does not act transitively on the set of its units.
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